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Optimization and privacy

Optimization has numerous applications in control (e.g., MPC,
minimum-energy state estimation).

In many problem instances, the optimization is performed repeatedly
once new measurements arrive.

There are at least two reasons to perform optimization over the
cloud:

I when local compute power is insufficient;
I when data is distributed.

Protecting data privacy is paramount to enable a wider acceptance of
optimization over the cloud.

In the context of control (e.g., MPC) we need to provide the cloud
with:

I plant (e.g., am I driving a car or a motorbike today);
I cost function (e.g., am I optimizing for safety or speed?);
I and measurements (e.g., am I violating speed limits? Where did I sleep

last night?).
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Optimization and privacy
Objectives

How to:
I leverage the compute power of the cloud;
I keep data private;
I do so in a computationally efficient manner so as not to degrade

control performance?

Answer: leverage isomorphisms and symmetries of control systems.
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Related work

Data encryption

I Partial or full homomorphic
encryption [Y. Shoukry et al. ‘16]

I Data obfuscation
[C. Wang, K. Ren, and J. Wang ‘11]

I Multi-party computation
[W. Du and M. J. Atallah ‘01]

Data perturbation
I cloud receives perturbed data of

a collection of systems (e.g.
differential privacy).

I [J. Cortés et al. ‘16],
[F. Koufogiannis and G. J. Pappas

‘17]

Drawbacks

large computational overhead
(HE has exponential complexity)

only studied for linear programs,
does not handle dynamics

requires several clients

methods require adding noise,
which reduces estimation
performance; noise might
accumulate with time
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Problem Formulation: dynamics

Linear system Σ = (A,B,C ), which we refer to as a plant, is
described by:

x [k + 1] = Ax [k] + Bu[k] y [k] = Cx [k], (3.1)

where x , u and y are the state, input and output of the system,
respectively.

The triple {x [k], u[k], y [k]}k∈N is called a trajectory if it satisfies
(3.1) for all k ∈ N.
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Problem Formulation: cost function

Moreover, each plant has a cost function that defines the control
objective and constraints. We consider quadratic cost functions and
affine constraints:

J(x , u) =
N∑

k=0

∆ηT [k]M∆η[k] Dη[k] ≤ 0,

where η[k] =
[
x [k] u[k]

]T
, ∆η[k] =

[
x [k]− x∗[k] u[k]− u∗[k]

]T
and x∗, u∗ are desired state and input, respectively.
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Problem Formulation: attack model and privacy objectives

The cloud is an honest but curious adversary (i.e. it will follow the protocol
all parties agree upon, but may attempt to extract and leak private info).

Privacy in control over the cloud Problem Formulation 7 / 21



Lab

Problem Formulation: Algorithm

Communication algorithm:

1 Handshake: plant transmits suitably modified versions of the plant
model, cost and constraints.

2 Plant operation: plant sends suitably modified version of its
measurements to the cloud. The cloud computes a new input based
on the received measurements and minimization of the cost and
sends it to the plant.
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Problem Formulation: Scenarios

The modifications applied to the plant model, cost and constraints depend
on the knowledge available to the cloud and privacy guarantees that we
aim to provide.

Scenarios considered:

1 The cloud has no knowledge about the plant;

2 The cloud has no knowledge about the plant except knowing its
sensors and actuators (e.g., the plant is a house and the cloud knows
it receives current and voltage measurements);

3 The cloud has complete knowledge about plant dynamics including its
sensors and actuators (e.g., the plant is an autonomous car controlled
over the manufacturer’s cloud).

Privacy in control over the cloud Problem Formulation 9 / 21
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Problem Formulation: Objectives

Objectives:

Modify plant (except in 3), cost, constraints and measurements to
prevent the cloud from inferring them.

Construct input from the data provided by the cloud so that
controlling the plant with such input results in a trajectory minimizing
the cost J.
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Results

Definition

Let Σ = (A,B,C ) and Σ̂ = (Â, B̂, Ĉ ) be linear control systems. The
quadruple ψ = (P,F ,G , S) is an isomorphism from Σ to Σ̂ denoted by
ψ∗Σ = Σ̂ if P, G and S are invertible linear maps and F is a linear map
such that:

Σ̂ = ψ∗Σ = (P(A− BG−1F )P−1,PBG−1,SCP−1).

We can interpret an isomorphism ψ = (P,F ,G , S) as a change of
coordinates in the states, a change of coordinates in the inputs with
feedback, and a change of coordinates in the outputs:

z = Px , v = Fx + Gu w = Sy .

These changes of coordinates also induce a new cost Ĵ and new
constraints D̂.
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Results

Let us define a quadruple of the dynamics, cost, constraints and the
trajectory as:

Ω = {Σ, J,D, {x [k], u[k], y [k]}k∈N}. (4.1)

The set of isomorphisms of a given system Σ, with function composition
as a group operation, forms a group. Hence, we can define an equivalence
relation between the quadruples Ω.

Definition

Let G be a subgroup of the group of all isomorphisms of Σ. Two
quadruples Ω and Ω̂ are called ∼G-equivalent if there exists an
isomorphism ψ ∈ G such that ψ∗Σ = Σ̂, Ĵ = ψ∗J, D̂ = ψ∗D and system
variables transformation equations hold for every k ∈ N.
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Results: Algorithm

Cloud

Plant
෠Σ = 𝜓∗Σ
መ𝐽 = 𝜓∗𝐽
𝐷 = 𝜓∗𝐷

෠Σ መ𝐽 ෡𝐷

Algorithm (Plant ⇐⇒ Cloud)

1 Phase 1: Handshaking

The plant encodes its dynamics, cost
function and constraint matrix and sends
them to the cloud.

2 Phase 2: Plant operation (repeated)

Encoding: The plant measures y [k],
encodes it into w [k] = Sy [k] and sends it
to the cloud.
Optimization: The cloud uses w [k],
estimates the plant state z[k], computes
the input v [k] minimizing Ĵ subject to the
constraint D̂ηk ≤ 0 and the dynamics Σ̂,
and sends v [k] to the plant.
Decoding: The plant decodes v [k] to
produce u[k] and sends u[k] to the
actuators.
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constraint D̂ηk ≤ 0 and the dynamics Σ̂,
and sends v [k] to the plant.

Decoding: The plant decodes v [k] to
produce u[k] and sends u[k] to the
actuators.

Privacy in control over the cloud Results 13 / 21



Lab

Results: Algorithm

Cloud
𝑣 𝑘 = argmin

𝑣

መ𝐽(𝑧, 𝑣)

Plant
𝑢 𝑘 = 𝐺−1(𝑣 𝑘 − 𝐹𝑥 𝑘 )

𝑤[𝑘]𝑣[𝑘]

Algorithm (Plant ⇐⇒ Cloud)

1 Phase 1: Handshaking

The plant encodes its dynamics, cost
function and constraint matrix and sends
them to the cloud.

2 Phase 2: Plant operation (repeated)

Encoding: The plant measures y [k],
encodes it into w [k] = Sy [k] and sends it
to the cloud.
Optimization: The cloud uses w [k],
estimates the plant state z[k], computes
the input v [k] minimizing Ĵ subject to the
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Results: Main theorems - Compatibility

Lemma

If {x [k], u[k], y [k]}k∈N is a trajectory of Σ, then
{Px [k],Fx [k] + Gu[k], Sy [k]}k∈N is a trajectory of Σ̂ = ψ∗Σ.

If the cloud receives Σ̂, then the received measurements Sy and
produced control inputs are compatible with the plant Σ̂.
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Results: Main theorems - Correctness

Lemma (On the utility of a modified optimization problem)

Suppose the cloud solves the optimization problem:

min
v

Ĵ(Px , v) subject to D̂ η̂k ≤ 0,

for the plant Σ̂ = ψ∗Σ and this optimization problem has the unique
solution vo . Then, the unique solution of the optimization problem:

min
u

J(x , u) subject to Dηk ≤ 0,

for the plant Σ is given by uo = G−1(vo − Fx).

By applying the “decoded” input, uo = G−1(vo − Fx), we control the
plant optimally.
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Results: Main theorems - Privacy

Theorem (On the privacy of quadruples)

Any two quadruples:

Ω = (Σ, J,D, {x [k], u[k], y [k]}k∈N)

Ω̂ = (Σ̂, Ĵ, D̂, {z [k], v [k],w [k]}k∈N),

related by an isomorphism (in other words, ∼G equivalent) are
indistinguishable by the cloud, i.e., the exchanged messages between the
cloud and plant are the same.

The cloud knows the quadruple (Σ̂, Ĵ, D̂, {z [k], v [k],w [k]}k∈N)
belongs to an equivalence class but cannot pinpoint which member of
the equivalence class it is.
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Results: Main theorems - Privacy

Theorem

Any two quadruples (Σ, J,D, {x [k], u[k], y [k]}k∈N) and
(Σ̂, Ĵ, D̂, {z [k], v [k],w [k]}k∈N) related by an isomorphism are
indistinguishable by the cloud, i.e., the exchanged messages between the
cloud and plant are the same.

When the cloud has no knowledge about the plant, inputs, or
outputs, we use the full isomorphism group.

When the cloud knows the sensors and actuators but not the plant
model, we use the subgroup of isomorphisms that leaves the inputs
and outputs invariant.

I The cloud learns the transfer function but not the plant realization
neither the state trajectory.

When the cloud has full knowledge, we use the subgroup of
isomorphisms that leaves the inputs, outputs, and plant model
invariant.

I The state trajectory remains private.

Privacy in control over the cloud Results 17 / 21



Lab

Results: Main theorems - Privacy

Theorem

Any two quadruples (Σ, J,D, {x [k], u[k], y [k]}k∈N) and
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Results: Analysis of the algorithm

The cloud does not require any new protocol since it remains
oblivious to the fact that “encryption” is being used.

At the client side, the algorithm only involves matrix multiplications.
This results in a lightweight encoding scheme.
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Conclusion

In this paper, the problem of ensuring privacy was addressed by using
isomorphisms and symmetries of control systems.

We showed how isomorphisms of control systems can be used to
obtain a lightweight encoding scheme that protects privacy of the
exchanged data.
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Ongoing work

How to quantify privacy?
I The number of elements in each equivalence class is infinite.
I Manifold dimension is a possible quantification of privacy.
I More detailed description is possible in certain cases: for controllable

and observable systems that are prime, the cloud only learns the
controllability indices (=observability indices).

How about side knowledge?
I If side knowledge is modeled by a surjective linear map π of the

isomorphism (secret key), the dimension of the manifold of
”uncertainty” is reduced by the dimension of the image of π.

Experimental validation is ongoing.

Privacy in control over the cloud Conclusion 20 / 21
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