Learning to control unknown feedback linearizable systems from expert demonstrations

Alimzhan Sultangazin

March 7, 2022

- We want to design a controller for an autonomous car that prioritizes comfort of its passengers
- Express comfort with a cost function and use optimal control?

A. Sultangazin **[Learning to control from expert demonstrations](#page-0-0)** March 7, 2022 2/18

^[1] D. Vogt et al. "A system for learning continuous human-robot interactions from human-human demonstrations". In: ICRA. 2017.

^[2] J. van den Berg et al. "Superhuman performance of surgical tasks by robots using iterative learning from human-guided demonstrations". In: ICRA. 2010.

^[3] Pieter Abbeel and Andrew Y. Ng. "Apprenticeship Learning via Inverse Reinforcement Learning". In: ICML. 2004.

^[4] Harish Ravichandar et al. "Recent Advances in Robot Learning from Demonstration". In: Annual Review of Control, Robotics, and Autonomous Systems 3.1 (2020), pp. 297–330.

- We want to design a controller for an autonomous car that prioritizes comfort of its passengers
- Express comfort with a cost function and use optimal control? What is the cost function? How to mathematically express comfort?

A. Sultangazin **[Learning to control from expert demonstrations](#page-0-0)** March 7, 2022 2/18

^[1] D. Vogt et al. "A system for learning continuous human-robot interactions from human-human demonstrations". In: ICRA. 2017.

^[2] J. van den Berg et al. "Superhuman performance of surgical tasks by robots using iterative learning from human-guided demonstrations". In: ICRA. 2010.

^[3] Pieter Abbeel and Andrew Y. Ng. "Apprenticeship Learning via Inverse Reinforcement Learning". In: ICML. 2004.

^[4] Harish Ravichandar et al. "Recent Advances in Robot Learning from Demonstration". In: Annual Review of Control, Robotics, and Autonomous Systems 3.1 (2020), pp. 297–330.

- We want to design a controller for an autonomous car that prioritizes comfort of its passengers
- Express comfort with a cost function and use optimal control? What is the cost function? How to mathematically express comfort?
- We believe it is easier to collect demonstrations of "comfortable driving" — learning from demonstrations (LfD).

A. Sultangazin [Learning to control from expert demonstrations](#page-0-0) March 7, 2022 2/18

^[1] D. Vogt et al. "A system for learning continuous human-robot interactions from human-human demonstrations". In: ICRA. 2017.

^[2] J. van den Berg et al. "Superhuman performance of surgical tasks by robots using iterative learning from human-guided demonstrations". In: ICRA. 2010.

^[3] Pieter Abbeel and Andrew Y. Ng. "Apprenticeship Learning via Inverse Reinforcement Learning". In: ICML. 2004.

^[4] Harish Ravichandar et al. "Recent Advances in Robot Learning from Demonstration". In: Annual Review of Control, Robotics, and Autonomous Systems 3.1 (2020), pp. 297–330.

- We want to design a controller for an autonomous car that prioritizes comfort of its passengers
- Express comfort with a cost function and use optimal control? What is the cost function? How to mathematically express comfort?
- We believe it is easier to collect demonstrations of "comfortable driving" — learning from demonstrations (LfD).
- Many other control tasks benefit from LfD, e.g., manufacturing [1]; healthcare [2]; robotics [3]. The growing research interest in LfD [4] reflects the need for a well-defined design methodology.

^[1] D. Vogt et al. "A system for learning continuous human-robot interactions from human-human demonstrations". In: ICRA. 2017.

^[2] J. van den Berg et al. "Superhuman performance of surgical tasks by robots using iterative learning from human-guided demonstrations". In: ICRA. 2010.

^[3] Pieter Abbeel and Andrew Y. Ng. "Apprenticeship Learning via Inverse Reinforcement Learning". In: ICML. 2004.

^[4] Harish Ravichandar et al. "Recent Advances in Robot Learning from Demonstration". In: Annual Review of Control, Robotics, and Autonomous Systems 3.1 (2020), pp. 297–330.

 \bullet In this work, we combine two methodologies: the LfD methodology from [5] and the data-driven control methodology from [6].

^[5] Alimzhan Sultangazin et al. Watch and Learn: Learning to control feedback linearizable systems from expert demonstrations. Tech. rep. UCLA, 2021. url: <http://www.cyphylab.ee.ucla.edu/Home/publications/UCLA-CyPhyLab-2021-03.pdf>.

^[6] Lucas Fraile, Matteo Marchi, and Paulo Tabuada. "Data-driven Stabilization of SISO Feedback Linearizable Systems". In: arXiv e-prints (Mar. 2020). url: <https://arxiv.org/abs/2003.14240>.

- \bullet In this work, we combine two methodologies: the LfD methodology from [5] and the data-driven control methodology from [6].
- The LfD methodology leverages the fact that the solution set of a linear system is a vector space to construct a stabilizing control law.

^[5] Alimzhan Sultangazin et al. Watch and Learn: Learning to control feedback linearizable systems from expert demonstrations. Tech. rep. UCLA, 2021. url: <http://www.cyphylab.ee.ucla.edu/Home/publications/UCLA-CyPhyLab-2021-03.pdf>.

^[6] Lucas Fraile, Matteo Marchi, and Paulo Tabuada. "Data-driven Stabilization of SISO Feedback Linearizable Systems". In: arXiv e-prints (Mar. 2020). url: <https://arxiv.org/abs/2003.14240>.

- \bullet In this work, we combine two methodologies: the LfD methodology from [5] and the data-driven control methodology from [6].
- The LfD methodology leverages the fact that the solution set of a linear system is a vector space to construct a stabilizing control law.
	- ▶ Results in [5] rely on the assumption that we have complete knowledge of the system.

^[5] Alimzhan Sultangazin et al. Watch and Learn: Learning to control feedback linearizable systems from expert demonstrations. Tech. rep. UCLA, 2021. url: <http://www.cyphylab.ee.ucla.edu/Home/publications/UCLA-CyPhyLab-2021-03.pdf>.

^[6] Lucas Fraile, Matteo Marchi, and Paulo Tabuada. "Data-driven Stabilization of SISO Feedback Linearizable Systems". In: arXiv e-prints (Mar. 2020). url: <https://arxiv.org/abs/2003.14240>.

- In this work, we combine two methodologies: the LfD methodology from [5] and the data-driven control methodology from [6].
- The LfD methodology leverages the fact that the solution set of a linear system is a vector space to construct a stabilizing control law.
	- ▶ Results in [5] rely on the assumption that we have complete knowledge of the system.
- The data-driven control methodology provides a method for stabilizing unknown feedback linearizable SISO systems with standard linear control techniques and sufficiently fast sampling rates.
	- \triangleright Data-driven control allows us to relax the assumption on the knowledge of the system.

^[5] Alimzhan Sultangazin et al. Watch and Learn: Learning to control feedback linearizable systems from expert demonstrations. Tech. rep. UCLA, 2021. url: <http://www.cyphylab.ee.ucla.edu/Home/publications/UCLA-CyPhyLab-2021-03.pdf>.

^[6] Lucas Fraile, Matteo Marchi, and Paulo Tabuada. "Data-driven Stabilization of SISO Feedback Linearizable Systems". In: arXiv e-prints (Mar. 2020). url: <https://arxiv.org/abs/2003.14240>.

Many LfD methods assume there exists a mapping from state to control input that dictates the expert's behaviour, i.e., the expert's policy.

[9] Elia Kaufmann et al. "Deep Drone Acrobatics". In: arXiv e-prints (2020). URL: <https://arxiv.org/abs/2006.05768>.

[10] F. Codevilla et al. "End-to-End Driving Via Conditional Imitation Learning". In: 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018, pp. 4693-4700, poi: [10.1109/ICRA.2018.8460487](https://doi.org/10.1109/ICRA.2018.8460487).

[11] Malayandi Palan et al. "Fitting a Linear Control Policy to Demonstrations with a Kalman Constraint". In: arXiv e-prints, arXiv:2001.07572 (Jan. 2020).

^[7] Dean A. Pomerleau. "ALVINN: An Autonomous Land Vehicle in a Neural Network". In: NIPS '88. San Francisco, CA, USA, 1989. [8] Pieter Abbeel, Adam Coates, and Andrew Y. Ng. "Autonomous Helicopter Aerobatics through Apprenticeship Learning". In: The International Journal of Robotics Research 29.13 (2010), pp. 1608-1639. DOI: [10.1177/0278364910371999](https://doi.org/10.1177/0278364910371999).

- Many LfD methods assume there exists a mapping from state to control input that dictates the expert's behaviour, i.e., the expert's policy.
- In many ML-based LfD methods, policy learning is viewed as a supervised-learning problem (e.g., [7], [8], [9])

[9] Elia Kaufmann et al. "Deep Drone Acrobatics". In: arXiv e-prints (2020). url: <https://arxiv.org/abs/2006.05768>.

[10] F. Codevilla et al. "End-to-End Driving Via Conditional Imitation Learning". In: 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018, pp. 4693-4700, poi: [10.1109/ICRA.2018.8460487](https://doi.org/10.1109/ICRA.2018.8460487).

[11] Malayandi Palan et al. "Fitting a Linear Control Policy to Demonstrations with a Kalman Constraint". In: arXiv e-prints, arXiv:2001.07572 (Jan. 2020).

^[7] Dean A. Pomerleau. "ALVINN: An Autonomous Land Vehicle in a Neural Network". In: NIPS '88. San Francisco, CA, USA, 1989. [8] Pieter Abbeel, Adam Coates, and Andrew Y. Ng. "Autonomous Helicopter Aerobatics through Apprenticeship Learning". In: The International Journal of Robotics Research 29.13 (2010), pp. 1608-1639. DOI: [10.1177/0278364910371999](https://doi.org/10.1177/0278364910371999).

- Many LfD methods assume there exists a mapping from state to control input that dictates the expert's behaviour, i.e., the expert's policy.
- In many ML-based LfD methods, policy learning is viewed as a supervised-learning problem (e.g., [7], [8], [9])
- Issues with ML-based approaches: need many demonstrations, cannot recover from disturbances [10], few formal stability guarantees.

^[7] Dean A. Pomerleau. "ALVINN: An Autonomous Land Vehicle in a Neural Network". In: NIPS '88. San Francisco, CA, USA, 1989. [8] Pieter Abbeel, Adam Coates, and Andrew Y. Ng. "Autonomous Helicopter Aerobatics through Apprenticeship Learning". In: The International Journal of Robotics Research 29.13 (2010), pp. 1608-1639. DOI: [10.1177/0278364910371999](https://doi.org/10.1177/0278364910371999).

^[9] Elia Kaufmann et al. "Deep Drone Acrobatics". In: arXiv e-prints (2020). url: <https://arxiv.org/abs/2006.05768>.

^[10] F. Codevilla et al. "End-to-End Driving Via Conditional Imitation Learning". In: 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018, pp. 4693-4700, poi: [10.1109/ICRA.2018.8460487](https://doi.org/10.1109/ICRA.2018.8460487).

^[11] Malayandi Palan et al. "Fitting a Linear Control Policy to Demonstrations with a Kalman Constraint". In: arXiv e-prints, arXiv:2001.07572 (Jan. 2020).

- Many LfD methods assume there exists a mapping from state to control input that dictates the expert's behaviour, i.e., the expert's policy.
- In many ML-based LfD methods, policy learning is viewed as a supervised-learning problem (e.g., [7], [8], [9])
- Issues with ML-based approaches: need many demonstrations, cannot recover from disturbances [10], few formal stability guarantees.
- \bullet Control-theoretic approaches: the work in [11] is conceptually the closest to ours, but we do not assume the expert's policy to be linear.

[7] Dean A. Pomerleau. "ALVINN: An Autonomous Land Vehicle in a Neural Network". In: NIPS '88. San Francisco, CA, USA, 1989. [8] Pieter Abbeel, Adam Coates, and Andrew Y. Ng. "Autonomous Helicopter Aerobatics through Apprenticeship Learning". In: The International Journal of Robotics Research 29.13 (2010), pp. 1608-1639. DOI: [10.1177/0278364910371999](https://doi.org/10.1177/0278364910371999).

[9] Elia Kaufmann et al. "Deep Drone Acrobatics". In: arXiv e-prints (2020). url: <https://arxiv.org/abs/2006.05768>.

[11] Malayandi Palan et al. "Fitting a Linear Control Policy to Demonstrations with a Kalman Constraint". In: arXiv e-prints, arXiv:2001.07572 (Jan. 2020).

^[10] F. Codevilla et al. "End-to-End Driving Via Conditional Imitation Learning". In: 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018, pp. 4693-4700, poi: [10.1109/ICRA.2018.8460487](https://doi.org/10.1109/ICRA.2018.8460487).

Consider a continuous-time control-affine system:

$$
\Sigma: \quad \dot{x} = f(x) + g(x)u, \quad y = h(x). \tag{1}
$$

Consider a continuous-time control-affine system:

$$
\Sigma: \quad \dot{x} = f(x) + g(x)u, \quad y = h(x). \tag{1}
$$

Triple $(x, u, y) : \mathbb{R}_0^+ \to \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}$: a solution of the system (1) . \bullet Functions x, u, and y are trajectory, control input, and output of [\(1\)](#page-13-0).

Consider a continuous-time control-affine system:

$$
\Sigma: \quad x = f(x) + g(x)u, \quad y = h(x). \tag{1}
$$

Triple $(x, u, y) : \mathbb{R}_0^+ \to \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}$: a solution of the system (1) . \bullet Functions x, u, and y are trajectory, control input, and output of [\(1\)](#page-13-0). • Given a sampling period $T > 0$, assume u is constant over sampling intervals and y is measured at the sampling instants.

Consider a continuous-time control-affine system:

$$
\Sigma: \quad x = f(x) + g(x)u, \quad y = h(x). \tag{1}
$$

Triple $(x, u, y) : \mathbb{R}_0^+ \to \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}$: a solution of the system (1) .

- \bullet Functions x, u, and y are trajectory, control input, and output of [\(1\)](#page-13-0). • Given a sampling period $T > 0$, assume u is constant over sampling
	- intervals and y is measured at the sampling instants.
- \bullet For a continuous-time signal v , its corresponding sampled-data signal v_s is defined by $v_s(k) \triangleq v(k)$.

Consider a continuous-time control-affine system:

$$
\Sigma: \quad \dot{x} = f(x) + g(x)u, \quad y = h(x). \tag{1}
$$

Triple $(x, u, y) : \mathbb{R}_0^+ \to \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}$: a solution of the system (1) .

- \bullet Functions x, u, and y are trajectory, control input, and output of [\(1\)](#page-13-0). • Given a sampling period $T > 0$, assume u is constant over sampling intervals and y is measured at the sampling instants.
- \bullet For a continuous-time signal v , its corresponding sampled-data signal v_s is defined by $v_s(k) \triangleq v(k)$.

Definition

A controller $\kappa:\mathbb{R}^n\to\mathbb{R}^m$ is *asymptotically stabilizing* for system (1) if the origin is uniformly asymptotically stable 1 for the system (1) with $u=\kappa(x).$

 \llbracket 1 that is, there exists a class KL function 1 β such that $\Vert x(t)\Vert \leq \beta(\Vert x(t_0)\Vert, t-t_0), \ \forall t\geq t_0\geq 0.$

• Suppose there exists an unknown asymptotically stabilizing controller $u = \kappa(x)$ — the expert controller.

- Suppose there exists an unknown asymptotically stabilizing controller $u = \kappa(x)$ — the expert controller.
- Assume the expert produces $n + 1$ expert solutions of system [\(1\)](#page-13-0) with length $\tau \in \mathbb{R}$:

 $\mathcal{D} = \{(\mathsf{x}^i, \mathsf{u}^i, \mathsf{y}^i)\}_{i=1}^{n+1}, \text{ with } (\mathsf{x}^i, \mathsf{u}^i, \mathsf{y}^i) : [0, \tau] \to \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}.$

We collect the corresponding set of measurement samples:

$$
\mathcal{D}_s = \{y_s^i\}_{i=1}^{n+1}, \quad y_s^i(k) \triangleq y^i(k)\quad \text{(2)}
$$

- Suppose there exists an unknown asymptotically stabilizing controller $u = \kappa(x)$ — the expert controller.
- Assume the expert produces $n + 1$ expert solutions of system [\(1\)](#page-13-0) with length $\tau \in \mathbb{R}$:

$$
\mathcal{D}=\{(x^i, u^i, y^i)\}_{i=1}^{n+1}, \text{ with } (x^i, u^i, y^i): [0, \tau] \to \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}.
$$

We collect the corresponding set of measurement samples:

$$
\mathcal{D}_s = \{y_s^i\}_{i=1}^{n+1}, \quad y_s^i(k) \triangleq y^i(k)\text{.}
$$
 (2)

• Assume the system (1) is feedback linearizable with h having a relative degree *n*, i.e., for all $x \in \mathbb{R}^n$:

$$
L_g L_f^i h(x) = 0, \quad i = 0, \dots, n-2,
$$
 (3)

$$
L_g L_f^{n-1} h(x) \neq 0. \tag{4}
$$

- Suppose there exists an unknown asymptotically stabilizing controller $u = \kappa(x)$ — the expert controller.
- Assume the expert produces $n + 1$ expert solutions of system [\(1\)](#page-13-0) with length $\tau \in \mathbb{R}$:

$$
\mathcal{D}=\{(x^i, u^i, y^i)\}_{i=1}^{n+1}, \text{ with } (x^i, u^i, y^i): [0, \tau] \to \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}.
$$

We collect the corresponding set of measurement samples:

$$
\mathcal{D}_s = \{y_s^i\}_{i=1}^{n+1}, \quad y_s^i(k) \triangleq y^i(k)\text{.}
$$
 (2)

• Assume the system (1) is feedback linearizable with h having a relative degree *n*, i.e., for all $x \in \mathbb{R}^n$:

$$
L_g L_f^i h(x) = 0, \quad i = 0, \dots, n-2,
$$
 (3)

$$
L_g L_f^{n-1} h(x) \neq 0. \tag{4}
$$

In addition, assume w.l.o.g. that $L_g L_f^{n-1}$ $_{f}^{n-1}h > 0.$

 \bullet Our goal is to use the set of measurement samples \mathcal{D}_s to construct a controller that is guaranteed to stabilize the system [\(1\)](#page-13-0).

- \bullet Our goal is to use the set of measurement samples \mathcal{D}_{ϵ} to construct a controller that is guaranteed to stabilize the system [\(1\)](#page-13-0).
- For clarity of exposition, in what follows we assume $n = 2$.

- \bullet Our goal is to use the set of measurement samples \mathcal{D}_{ϵ} to construct a controller that is guaranteed to stabilize the system [\(1\)](#page-13-0).
- For clarity of exposition, in what follows we assume $n = 2$.
- We can rewrite the nonlinear system dynamics [\(1\)](#page-13-0) in the coordinates:

$$
z = \Phi(x) = \begin{bmatrix} h(x) & L_f h(x) \end{bmatrix}^T, \tag{5}
$$

and get:

$$
\begin{aligned}\n\dot{z}_1 &= z_2, \\
\dot{z}_2 &= \alpha(z) + \beta(z)u = w, \\
y &= z_1\n\end{aligned} \tag{6}
$$

where $\alpha=(L_f^2 h)\circ \Phi^{-1}$, $\beta=(L_{\bf g}L_f h)\circ \Phi^{-1}$, and $w\triangleq \alpha(z)+\beta(z)u$.

Learning from demonstrations when dynamics are known

• For now, assume that we know functions α and β and are given the set $\mathcal{D}_{\mathsf{e}} = \{(\mathsf{z}^i,w^i)\}$, where $\mathsf{z}^i = \Phi(\mathsf{x}^i)$ and $w^i = \alpha(\mathsf{z}^i) + \beta(\mathsf{z}^i)u^i$.

• For now, assume that we know functions α and β and are given the set $\mathcal{D}_{\mathsf{e}} = \{(\mathsf{z}^i,w^i)\}$, where $\mathsf{z}^i = \Phi(\mathsf{x}^i)$ and $w^i = \alpha(\mathsf{z}^i) + \beta(\mathsf{z}^i)u^i$. • Construct the following matrices:

$$
Z(t) \triangleq [z2(t) - z1(t) | \cdots | zn+1(t) - z1(t)] \qquad (7)
$$

$$
W(t) \triangleq [w2(t) - w1(t) | \cdots | wn+1(t) - w1(t)]. \qquad (8)
$$

• For now, assume that we know functions α and β and are given the set $\mathcal{D}_{\mathsf{e}} = \{(\mathsf{z}^i,w^i)\}$, where $\mathsf{z}^i = \Phi(\mathsf{x}^i)$ and $w^i = \alpha(\mathsf{z}^i) + \beta(\mathsf{z}^i)u^i$. • Construct the following matrices:

$$
Z(t) \triangleq [z2(t) - z1(t) | \cdots | zn+1(t) - z1(t)] \qquad (7)
$$

$$
W(t) \triangleq [w2(t) - w1(t) | \cdots | wn+1(t) - w1(t)]. \qquad (8)
$$

Lemma (Affine comb. of inputs \Rightarrow Affine comb. of trajectories)

- Suppose we are given a set of finite-length solutions $\{(z^i, w^i)\}_{i=1}^{n+1}$ of the system [\(6\)](#page-22-0), where each (z^i, w^i) is defined for $0 \le t \le \tau$, $\tau \in \mathbb{R}$.
- Assume that $\{z^i(0)\}_{i=1}^{n+1}$ is an affinely independent set.

• For now, assume that we know functions α and β and are given the set $\mathcal{D}_{\mathsf{e}} = \{(\mathsf{z}^i,w^i)\}$, where $\mathsf{z}^i = \Phi(\mathsf{x}^i)$ and $w^i = \alpha(\mathsf{z}^i) + \beta(\mathsf{z}^i)u^i$. • Construct the following matrices:

$$
Z(t) \triangleq [z2(t) - z1(t) | \cdots | zn+1(t) - z1(t)] \qquad (7)
$$

$$
W(t) \triangleq [w2(t) - w1(t) | \cdots | wn+1(t) - w1(t)]. \qquad (8)
$$

Lemma (Affine comb. of inputs \Rightarrow Affine comb. of trajectories)

Suppose we are given a set of finite-length solutions $\{(z^i, w^i)\}_{i=1}^{n+1}$ of the system [\(6\)](#page-22-0), where each (z^i, w^i) is defined for $0 \le t \le \tau$, $\tau \in \mathbb{R}$.

Assume that $\{z^i(0)\}_{i=1}^{n+1}$ is an affinely independent set.

Then, for $t_0 \le t \le \tau + t_0$, under the input $w(t) = W(t - t_0) \zeta$ with $\zeta = Z^{-1}(0)z_0$, the solution of the system (6) with $z(t_0) = z_0$ is:

$$
z(t)=Z(t-t_0)\zeta.
$$

$$
\begin{cases} 1. & \text{For } t \in [0, \tau), \\ w(t) = W(t)\zeta(0) \text{ with } \\ \zeta(0) = Z^{-1}(0)z(0) \end{cases}
$$

2. For
$$
t \in [\tau, 2\tau)
$$
,
\n $w(t) = W(t - \tau)\zeta(1)$ with
\n $\zeta(1) = Z^{-1}(0)z(\tau)$

1. For
$$
t \in [0, \tau)
$$
,
\n $w(t) = W(t)\zeta(0)$ with
\n $\zeta(0) = Z^{-1}(0)z(0)$

2. For
$$
t \in [\tau, 2\tau)
$$
,
\n $w(t) = W(t - \tau)\zeta(1)$ with
\n $\zeta(1) = Z^{-1}(0)z(\tau)$

3. For
$$
t \in [2\tau, 3\tau)
$$
,
\n $w(t) = W(t - 2\tau)\zeta(2)$ with
\n $\zeta(2) = Z^{-1}(0)z(2\tau)$

We apply the following preliminary controller:

$$
u(t) = \beta^{-1}(z(t))(-\alpha(z(t)) + w(t, z(t))), \qquad (9)
$$

to bring the system (1) to the form $y^{(n)}=w$ and use the control law:

$$
w(t, z(t)) = W(t - p\tau)Z^{-1}(t - p\tau)z(t) = K(t)z(t),
$$
 (10)

for all $t \in [p\tau, (p+1)\tau)$ and $p \in \mathbb{N}_0$.

We apply the following preliminary controller:

$$
u(t) = \beta^{-1}(z(t))(-\alpha(z(t)) + w(t, z(t))), \qquad (9)
$$

to bring the system (1) to the form $y^{(n)}=w$ and use the control law:

$$
w(t, z(t)) = W(t - p\tau)Z^{-1}(t - p\tau)z(t) = K(t)z(t),
$$
 (10)

for all $t \in [p\tau, (p+1)\tau)$ and $p \in \mathbb{N}_0$.

Lemma (Minimal length of demonstrations for stability)

Suppose a set $\mathcal{D}_e = \{(z^i,w^i)\}_{i=1}^{n+1}$ of solutions with length $\tau \in \mathbb{R}^+$ is generated by the system [\(6\)](#page-22-0) in closed loop with an asymptotically stabilizing controller $u = \kappa(z)$.

Assume that $\{z^i(t)\}_{i=1}^{n+1}$ is affinely independent for all $t\in [0,\tau].$ Then, there is $\bar{\tau} \in \mathbb{R}^+$ such that for all $\tau \geq \bar{\tau}$, the origin of the system [\(6\)](#page-22-0) in closed loop with the controller in [\(10\)](#page-34-0) is uniformly exponentially stable.

Learning from demonstrations when dynamics are unknown (using data-driven control)

Previous assumptions: know $\mathcal{D}_e = \{(z^i, w^i)\}_{i=1}^{n+1}$ and functions α and β .

[6] Fraile, Marchi, and Tabuada, 2020, "Data-driven Stabilization of SISO Feedback Linearizable Systems"

Previous assumptions: know $\mathcal{D}_e = \{(z^i, w^i)\}_{i=1}^{n+1}$ and functions α and β . The data-driven control from [6] consists of two components: state estimator and dynamic controller.

[6] Fraile, Marchi, and Tabuada, 2020, "Data-driven Stabilization of SISO Feedback Linearizable Systems"

- Previous assumptions: know $\mathcal{D}_e = \{(z^i, w^i)\}_{i=1}^{n+1}$ and functions α and β .
- The data-driven control from [6] consists of two components: state estimator and dynamic controller.
- We use the state estimator from [6] to:
	- ▶ estimate the set $\widehat{\mathcal{D}}_e = \{(\widehat{z}_s^i, \widehat{w}_s^i)\}_{i=1}^{n+1}$ from the given data $\mathcal{D}_s = \{y_s^i\}_{i=1}^{n+1}$;

^[6] Fraile, Marchi, and Tabuada, 2020, "Data-driven Stabilization of SISO Feedback Linearizable Systems"

Previous assumptions: know $\mathcal{D}_e = \{(z^i, w^i)\}_{i=1}^{n+1}$ and functions α and β .

- The data-driven control from [6] consists of two components: state estimator and dynamic controller.
- We use the state estimator from [6] to:
	- Experiment the set $\widehat{\mathcal{D}}_e = \{(\widehat{z}_s^i, \widehat{w}_s^i)\}_{i=1}^{n+1}$ from the given data $\mathcal{D}_s = \{y_s^i\}_{i=1}^{n+1}$;
	- **•** provide estimates of \hat{z}_s and \hat{w}_s to the dynamic controller.

[6] Fraile, Marchi, and Tabuada, 2020, "Data-driven Stabilization of SISO Feedback Linearizable Systems"

Previous assumptions: know $\mathcal{D}_e = \{(z^i, w^i)\}_{i=1}^{n+1}$ and functions α and β .

- The data-driven control from [6] consists of two components: state estimator and dynamic controller.
- We use the state estimator from [6] to:
	- Experiment the set $\widehat{\mathcal{D}}_e = \{(\widehat{z}_s^i, \widehat{w}_s^i)\}_{i=1}^{n+1}$ from the given data $\mathcal{D}_s = \{y_s^i\}_{i=1}^{n+1}$;
	- **•** provide estimates of \hat{z}_s and \hat{w}_s to the dynamic controller.
- The dynamic controller from [6] tracks the virtual input w from the learned controller [\(10\)](#page-34-0) without knowing α and β .

[6] Fraile, Marchi, and Tabuada, 2020, "Data-driven Stabilization of SISO Feedback Linearizable Systems"

The main result

Theorem

Consider an unknown SISO system [\(1\)](#page-13-0) where h has a relative degree n.

- Let T be the sampling time and τ be the demonstration length.
- Suppose we are given $\mathcal{D}_s = \{y_s^i\}_{i=1}^{n+1}$ generated by the system (1) in closed loop with a stabilizing expert. and the state estimator from [6] is used to construct $\widehat{\mathcal{D}}_e = \left\{ \left(\widehat{z}^i_s, \widehat{w}^i_s \right) \right\}_{i=1}^{n+1}$. Then, there exist $\bar{T} \in \mathbb{R}^+$ and $\bar{\tau} \in \mathbb{R}^+$ so that, for any $T \in [0, \bar{T}]$ and any $\tau > \bar{\tau}$, the dynamic controller, based on the learned controller [\(10\)](#page-34-0), renders the closed-loop solutions bounded and $\lim_{t\to\infty} x(t) = 0$.

Conclusion

We have extended a methodology in [5] for constructing a stabilizing controller from expert demonstrations to unknown SISO systems.

[5] Sultangazin et al., 2021, Watch and Learn: Learning to control feedback linearizable systems from expert demonstrations

Conclusion

- We have extended a methodology in [5] for constructing a stabilizing controller from expert demonstrations to unknown SISO systems.
- Compared to machine-learning approaches, this methodology requires few demonstrations (i.e., the minimal number of demonstrations is $n + 1$) and provides formal stability guarantees.

^[5] Sultangazin et al., 2021, Watch and Learn: Learning to control feedback linearizable systems from expert demonstrations

Conclusion

- We have extended a methodology in [5] for constructing a stabilizing controller from expert demonstrations to unknown SISO systems.
- Compared to machine-learning approaches, this methodology requires few demonstrations (i.e., the minimal number of demonstrations is $n + 1$) and provides formal stability guarantees.
- As part of future work, we plan to:
	- ▶ apply a similar methodology to learn control of unknown MIMO systems;
	- \triangleright experimentally verify this methodology using the testbed with Crazyflie quadrotors we have in our laboratory.

[5] Sultangazin et al., 2021, Watch and Learn: Learning to control feedback linearizable systems from expert demonstrations