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Introduction

@ We want to design a controller for an autonomous car that prioritizes
comfort of its passengers

@ Express comfort with a cost function and use optimal control?

[1] D. Vogt et al. “A system for learning continuous human-robot interactions from human-human demonstrations”.

[2] J. van den Berg et al. “Superhuman performance of surgical tasks by robots using iterative learning from human-guided
demonstrations” .

[3] Pieter Abbeel and Andrew Y. Ng. “Apprenticeship Learning via Inverse Reinforcement Learning”.

[4] Harish Ravichandar et al. “Recent Advances in Robot Learning from Demonstration”.
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@ We want to design a controller for an autonomous car that prioritizes
comfort of its passengers

@ Express comfort with a cost function and use optimal control?
What is the cost function? How to mathematically express comfort?

@ We believe it is easier to collect demonstrations of “comfortable
driving” — learning from demonstrations (LfD).

@ Many other control tasks benefit from LfD, e.g., manufacturing [1];
healthcare [2]; robotics [3]. The growing research interest in LfD [4]
reflects the need for a well-defined design methodology.
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Bird's eye view of this work

@ In this work, we combine two methodologies: the LfD methodology
from [5] and the data-driven control methodology from [6].

[5] Alimzhan Sultangazin et al. Watch and Learn: Learning to control feedback linearizable systems from expert demonstrations.
Tech. rep. UCLA, 2021. URL: http://www.cyphylab.ee.ucla.edu/Home/publications/UCLA-CyPhyLab-2021-03.pdf.

[6] Lucas Fraile, Matteo Marchi, and Paulo Tabuada. “Data-driven Stabilization of SISO Feedback Linearizable Systems”. In: arXiv
e-prints (Mar. 2020). URL: https://arxiv.org/abs/2003.14240.
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Bird's eye view of this work

@ In this work, we combine two methodologies: the LfD methodology
from [5] and the data-driven control methodology from [6].

@ The LfD methodology leverages the fact that the solution set of a
linear system is a vector space to construct a stabilizing control law.

» Results in [5] rely on the assumption that we have complete knowledge
of the system.

@ The data-driven control methodology provides a method for stabilizing
unknown feedback linearizable SISO systems with standard linear
control techniques and sufficiently fast sampling rates.

» Data-driven control allows us to relax the assumption on the knowledge
of the system.
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Related work (Policy-learning algorithms)

@ Many LfD methods assume there exists a mapping from state to control
input that dictates the expert’s behaviour, i.e., the expert's policy.

[7] Dean A. Pomerleau. “ALVINN: An Autonomous Land Vehicle in a Neural Network”. In: NV/PS 85, San Francisco, CA, USA, 1989

[8] Pieter Abbeel, Adam Coates, and Andrew Y. Ng. “Autonomous Helicopter Aerobatics through Apprenticeship Learning”. |
International Journal of Robotics Research 29.13 (2010), pp. 1608-1639

n: The
) DOI: 10.1177/0278364910371999.
[9] Elia Kaufmann et al. “Deep Drone Acrobatics”. In: arXiv e-prints (2020). URL: https://arxiv.org/abs/2006.05768.
[10] F. Codevilla et al. “End-to-End Driving Via Conditional Imitation Learning”. |n: 2018 |[EEE International Conference on Robotics and
Automation (ICRA). 2018, pp. 4693-4700. poI: 10.1109/ICRA.2018.8460487.

[11] Malayandi Palan et al. “Fitting a Linear Control Policy to Demonstrations with a Kalman Constraint”. Ir
arXiv:2001.07572 (Jan. 2020).
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@ Many LfD methods assume there exists a mapping from state to control
input that dictates the expert’s behaviour, i.e., the expert's policy.

@ In many ML-based LfD methods, policy learning is viewed as a
supervised-learning problem (e.g., [7], [8]. [9])

@ Issues with ML-based approaches: need many demonstrations, cannot
recover from disturbances [10], few formal stability guarantees.

o Control-theoretic approaches: the work in [11] is conceptually the
closest to ours, but we do not assume the expert’s policy to be linear.
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Problem Statement and Preliminaries

Consider a continuous-time control-affine system:
Y: x=f(x)+g(x)u, y=h(x). (1)
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Consider a continuous-time control-affine system:
Y. x=f(x)+g(x)u, y=h(x). (1)
o Triple (x,u,y) : Rj — R" x R x R: a solution of the system (1).
@ Functions x, u, and y are trajectory, control input, and output of (1).
o Given a sampling period T > 0, assume u is constant over sampling

intervals and y is measured at the sampling instants.

@ For a continuous-time signal v, its corresponding sampled-data signal
v, is defined by vg(k) = v(kT).

Definition

A controller x : R" — R™ is asymptotically stabilizing for system (1) if the
origin is uniformly asymptotically stable! for the system (1) with u = x(x).

[1 ! that is, there exists a class C£ function® 8 such that ||x(t)|| < B(|[x(to)ll, t — t), ¥t > tg > 0.
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Problem Statement and Preliminaries

@ Suppose there exists an unknown asymptotically stabilizing controller
u = Kk(x) — the expert controller.
@ Assume the expert produces n + 1 expert solutions of system (1) with

length 7 € R:
D= {(x",u',y" )}l with (x', v, y") 1 [0,7] = R" x R x R.
We collect the corresponding set of measurement samples:
Ds={y}5), yi(k) £ y'(kT). (2)
@ Assume the system (1) is feedback linearizable with h having a relative
degree n, i.e., for all x € R":
LeLlih(x)=0, i=0,...,n—2, (3)
L L27h(x) # 0. (4)
o In addition, assume w.l.o.g. that L,L?*h > 0.
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Problem Statement and Preliminaries

@ Our goal is to use the set of measurement samples D to construct a
controller that is guaranteed to stabilize the system (1).

o For clarity of exposition, in what follows we assume n = 2.
@ We can rewrite the nonlinear system dynamics (1) in the coordinates:

z=0(x) = [h(x) Leh(x)]", (5)
and get: _
z=a(z)+ pf(z2)u=w, (6)
y=2a

where a = (L2h) 0 71, B = (LyLrh) 0 @71, and w = a(z) + B(2)u.

A. Sultangazin March 7, 2022 7/18



Learning from demonstrations when
dynamics are known
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Constructing the learned controller

@ For now, assume that we know functions v and 3 and are given the set
D, = {(z',w')}, where z' = ®(x') and w' = a(z') + B(z)u'.

A. Sultangazin Learning to control from expert demonstrations March 7, 2022 9/18



Constructing the learned controller

@ For now, assume that we know functions v and 3 and are given the set
D, = {(z',w')}, where z' = ®(x') and w' = a(z') + B(z)u'.
@ Construct the following matrices:
Z(t) £ [22(t) = 2'(t) | -+ [ 2"7H(t) — 2M(t)] (7)
W(t) £ [w?(t) — wi(t) |- | wT(t) — wi(t)]. (8)

A. Sultangazin March 7, 2022 9/18



Constructing the learned controller

@ For now, assume that we know functions v and 3 and are given the set
D, = {(z',w')}, where z' = ®(x') and w' = a(z') + B(z)u'.
@ Construct the following matrices:
Z(t) £ [22(t) = 2'(t) | -+ [ 2"7H(t) — 2M(t)] (7)
W(t) £ [w?(t) — wi(t) |- | wT(t) — wi(t)]. (8)

Lemma (Affine comb. of inputs = Affine comb. of trajectories)

o Suppose we are given a set of finite-length solutions {(z', w')}"*! of
the system (6), where each (z', w') is defined for 0 <t <1, 7 € R.

o Assume that {Z'(0)}*] is an affinely independent set.

A. Sultangazin March 7, 2022 9/18



Constructing the learned controller

@ For now, assume that we know functions v and 3 and are given the set
D, = {(z',w')}, where z' = ®(x') and w' = a(z') + B(z)u'.
@ Construct the following matrices:
Z(t) & [22(t) = 2(t) | -+ | 2H(8) — (1)) (7)
W(t) £ [w?(t) — wi(t) |- | wT(t) — wi(t)]. (8)
Lemma (Affine comb. of inputs = Affine comb. of trajectories)

o Suppose we are given a set of finite-length solutions {(z, w)} ] of
the system (6), where each (z',w') is defined for0 < t <7, 7 € R.
o Assume that {Z'(0)}*] is an affinely independent set.
Then, for ty < t < T+ to, under the input w(t) = W(t — ty)¢ with
¢ = Z71(0)z, the solution of the system (6) with z(ty) = zo is:

z(t) = Z(t — to)C.
March 7, 2022 9/18




Constructing the learned controller

z\(t)

e z(0)

2%(t)

A. Sultangazin Learning to control from expert demonstrations

March 7, 2022

10/18



Constructing the learned controller

1. For t € [0,7),
2(¢) w(t) = W(t)¢(0) with
¢(0) = 271(0)z(0)

2%(t)
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Constructing the learned controller

1. For t € [0,7),
Z\(t) w(t) = W(t)((0) with
¢(0) = 27(0)z(0)

() \
2(27)\ 2. For t € [r,27),
w(t) = W(t — 7)C(1) with

¢(1) = 27(0)=(7)

»z(0)

Learning to control from expert demonstrations March 7, 2022 12/18



Constructing the learned controller

1. For t €0, 7),
2(¢) w(t) = W(t)¢(0) with
¢(0) = 271(0)z(0)

z()
2. For t € [r,27),
_z(27) w(t) = W(t — 7)¢(1) with
¢(1) = 27(0)=(7)
»z(0)

3. For t € [27,37),
w(t) = W(t — 27)¢(2) with
z%(t) ¢(2) = Z71(0)z(2r)
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Constructing the learned controller

We apply the following preliminary controller:

u(t) = B (2(t))(—olz(t)) + w(t, 2(t))), (9)
to bring the system (1) to the form y(" = w and use the control law:
w(t, z(t)) = W(t — pr)Z 1 (t — pr)z(t) = K(t)z(t), (10)

for all t € [pr,(p+ 1)7) and p € Np.
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Constructing the learned controller

We apply the following preliminary controller:

u(t) = 871 (2(1))(—a(z(t)) + w(t. 2(1))), (9)
to bring the system (1) to the form y(" = w and use the control law:
w(t, z(t)) = W(t — pr)Z 1 (t — pr)z(t) = K(t)z(t), (10)

for all t € [pr,(p+ 1)7) and p € Np.

Lemma (Minimal length of demonstrations for stability)

o Suppose a set D, = {(z', w')}"! of solutions with length T € R* is

generated by the system (6) in closed loop with an asymptotically
stabilizing controller u = k(z).

o Assume that {Z'(t)}!*! is affinely independent for all t € [0, 7].

Then, there is T € R™ such that for all T > T, the origin of the system (6)

in closed loop with the controller in (10) is uniformly exponentially stable.
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Learning from demonstrations when
dynamics are unknown (using data-driven control)
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Data-driven control and LfD for unknown systems

@ Previous assumptions: know D, = {(z/, w')}"*! and functions a and .

[6] Fraile, Marchi, and Tabuada, 2020, “Data-driven Stabilization of SISO Feedback Linearizable Systems”
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Data-driven control and LfD for unknown systems

@ Previous assumptions: know D, = {(z/, w')}"*! and functions a and .

@ The data-driven control from [6] consists of two components:
state estimator and dynamic controller.

@ We use the state estimator from [6] to:
> estimate the set D = {(Z, tl from the given data Ds = {y/}™;
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Data-driven control and LfD for unknown systems

n+1

@ Previous assumptions: know D, = {(z', w')}* and functions « and .

@ The data-driven control from [6] consists of two components:
state estimator and dynamic controller.
@ We use the state estimator from [6] to:

> estimate the set D = {(Z!, W/ "1l from the given data Ds = {y}"1};
» provide estimates of Z; and Ws to the dynamic controller.

[6] Fraile, Marchi, and Tabuada, 2020, “Data-driven Stabilization of SISO Feedback Linearizable Systems”
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Data-driven control and LfD for unknown systems

@ Previous assumptions: know D, = {(z/, w')}"*! and functions a and .
@ The data-driven control from [6] consists of two components:
state estimator and dynamic controller.
@ We use the state estimator from [6] to:
» estimate the set Do = {(Z!, "1l from the given data Ds = {y}"1};
» provide estimates of Z; and Ws to the dynamic controller.
@ The dynamic controller from [6] tracks the virtual input w from the
learned controller (10) without knowing « and p.

[6] Fraile, Marchi, and Tabuada, 2020, “Data-driven Stabilization of SISO Feedback Linearizable Systems”
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The main result

Theorem
Consider an unknown SISO system (1) where h has a relative degree n.

o Let T be the sampling time and T be the demonstration length.

o Suppose we are given Dy = {y!}"! generated by the system (1) in
closed loop with a stab//lzmg expert and the state estimator from [6] is
used to construct D, = = {(Z, )}7+11

Then, there exist T € Rt and 7 € R* so that, for any T € [0, T] and any
T > T, the dynamic controller, based on the learned controller (10), renders
the closed-loop solutions bounded and lim;_, ., x(t) = 0.
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Conclusion

@ We have extended a methodology in [5] for constructing a stabilizing
controller from expert demonstrations to unknown SISO systems.

[5] Sultangazin et al., 2021, Watch and Learn: Learning to control feedback linearizable systems from expert demonstrations
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Conclusion

@ We have extended a methodology in [5] for constructing a stabilizing
controller from expert demonstrations to unknown SISO systems.

@ Compared to machine-learning approaches, this methodology requires
few demonstrations (i.e., the minimal number of demonstrations is
n+ 1) and provides formal stability guarantees.

@ As part of future work, we plan to:

» apply a similar methodology to learn control of unknown MIMO
systems;

» experimentally verify this methodology using the testbed with Crazyflie
quadrotors we have in our laboratory.

[5] Sultangazin et al., 2021, Watch and Learn: Learning to control feedback linearizable systems from expert demonstrations
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