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Introduction

We want to design a controller for an autonomous car that prioritizes
comfort of its passengers

Express comfort with a cost function and use optimal control?

What is the cost function? How to mathematically express comfort?

We believe it is easier to collect demonstrations of “comfortable
driving” — learning from demonstrations (LfD).

Many other control tasks benefit from LfD, e.g., manufacturing [1];
healthcare [2]; robotics [3]. The growing research interest in LfD [4]
reflects the need for a well-defined design methodology.

[1] D. Vogt et al. “A system for learning continuous human-robot interactions from human-human demonstrations”. In: ICRA. 2017.

[2] J. van den Berg et al. “Superhuman performance of surgical tasks by robots using iterative learning from human-guided
demonstrations”. In: ICRA. 2010.

[3] Pieter Abbeel and Andrew Y. Ng. “Apprenticeship Learning via Inverse Reinforcement Learning”. In: ICML. 2004.

[4] Harish Ravichandar et al. “Recent Advances in Robot Learning from Demonstration”. In: Annual Review of Control, Robotics, and
Autonomous Systems 3.1 (2020), pp. 297–330.
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Bird’s eye view of this work

In this work, we combine two methodologies: the LfD methodology
from [5] and the data-driven control methodology from [6].

The LfD methodology leverages the fact that the solution set of a
linear system is a vector space to construct a stabilizing control law.

▶ Results in [5] rely on the assumption that we have complete knowledge
of the system.

The data-driven control methodology provides a method for stabilizing
unknown feedback linearizable SISO systems with standard linear
control techniques and sufficiently fast sampling rates.

▶ Data-driven control allows us to relax the assumption on the knowledge
of the system.

[5] Alimzhan Sultangazin et al. Watch and Learn: Learning to control feedback linearizable systems from expert demonstrations.
Tech. rep. UCLA, 2021. url: http://www.cyphylab.ee.ucla.edu/Home/publications/UCLA-CyPhyLab-2021-03.pdf.

[6] Lucas Fraile, Matteo Marchi, and Paulo Tabuada. “Data-driven Stabilization of SISO Feedback Linearizable Systems”. In: arXiv
e-prints (Mar. 2020). url: https://arxiv.org/abs/2003.14240.
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Related work (Policy-learning algorithms)

Many LfD methods assume there exists a mapping from state to control
input that dictates the expert’s behaviour, i.e., the expert’s policy.

In many ML-based LfD methods, policy learning is viewed as a
supervised-learning problem (e.g., [7], [8], [9])

Issues with ML-based approaches: need many demonstrations, cannot
recover from disturbances [10], few formal stability guarantees.

Control-theoretic approaches: the work in [11] is conceptually the
closest to ours, but we do not assume the expert’s policy to be linear.

[7] Dean A. Pomerleau. “ALVINN: An Autonomous Land Vehicle in a Neural Network”. In: NIPS ’88. San Francisco, CA, USA, 1989.

[8] Pieter Abbeel, Adam Coates, and Andrew Y. Ng. “Autonomous Helicopter Aerobatics through Apprenticeship Learning”. In: The
International Journal of Robotics Research 29.13 (2010), pp. 1608–1639. doi: 10.1177/0278364910371999.

[9] Elia Kaufmann et al. “Deep Drone Acrobatics”. In: arXiv e-prints (2020). url: https://arxiv.org/abs/2006.05768.

[10] F. Codevilla et al. “End-to-End Driving Via Conditional Imitation Learning”. In: 2018 IEEE International Conference on Robotics and
Automation (ICRA). 2018, pp. 4693–4700. doi: 10.1109/ICRA.2018.8460487.

[11] Malayandi Palan et al. “Fitting a Linear Control Policy to Demonstrations with a Kalman Constraint”. In: arXiv e-prints,
arXiv:2001.07572 (Jan. 2020).
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Problem Statement and Preliminaries

Consider a continuous-time control-affine system:

Σ : ẋ = f (x) + g(x)u, y = h(x). (1)

Triple (x , u, y) : R+
0 → Rn × R× R: a solution of the system (1).

Functions x , u, and y are trajectory, control input, and output of (1).
Given a sampling period T > 0, assume u is constant over sampling
intervals and y is measured at the sampling instants.
For a continuous-time signal v , its corresponding sampled-data signal
vs is defined by vs(k) ≜ v(kT ).

Definition

A controller κ : Rn → Rm is asymptotically stabilizing for system (1) if the
origin is uniformly asymptotically stable1 for the system (1) with u = κ(x).

[] 1 that is, there exists a class KL function1 β such that ∥x(t)∥ ≤ β(∥x(t0)∥, t − t0), ∀t ≥ t0 ≥ 0.
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Problem Statement and Preliminaries

Suppose there exists an unknown asymptotically stabilizing controller
u = κ(x) — the expert controller.

Assume the expert produces n + 1 expert solutions of system (1) with
length τ ∈ R:

D = {(x i , ui , y i)}n+1
i=1 , with (x i , ui , y i) : [0, τ ] → Rn × R× R.

We collect the corresponding set of measurement samples:

Ds = {y i
s}n+1

i=1 , y i
s(k) ≜ y i(kT ). (2)

Assume the system (1) is feedback linearizable with h having a relative
degree n, i.e., for all x ∈ Rn:

LgL
i
f h(x) = 0, i = 0, . . . , n − 2, (3)

LgL
n−1
f h(x) ̸= 0. (4)

In addition, assume w.l.o.g. that LgL
n−1
f h > 0.
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Problem Statement and Preliminaries

Our goal is to use the set of measurement samples Ds to construct a
controller that is guaranteed to stabilize the system (1).

For clarity of exposition, in what follows we assume n = 2.

We can rewrite the nonlinear system dynamics (1) in the coordinates:

z = Φ(x) =
[
h(x) Lf h(x)

]T
, (5)

and get:
ż1 = z2,

ż2 = α(z) + β(z)u = w ,

y = z1

(6)

where α = (L2f h) ◦ Φ−1, β = (LgLf h) ◦ Φ−1, and w ≜ α(z) + β(z)u.
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Learning from demonstrations when

dynamics are known
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Constructing the learned controller

For now, assume that we know functions α and β and are given the set
De = {(z i ,w i)}, where z i = Φ(x i) and w i = α(z i) + β(z i)ui .

Construct the following matrices:

Z (t) ≜
[
z2(t)− z1(t) · · · zn+1(t)− z1(t)

]
(7)

W (t) ≜
[
w 2(t)− w 1(t) · · · wn+1(t)− w 1(t)

]
. (8)

Lemma (Affine comb. of inputs ⇒ Affine comb. of trajectories)

Suppose we are given a set of finite-length solutions {(z i ,w i)}n+1
i=1 of

the system (6), where each (z i ,w i) is defined for 0 ≤ t ≤ τ , τ ∈ R.
Assume that {z i(0)}n+1

i=1 is an affinely independent set.

Then, for t0 ≤ t ≤ τ + t0, under the input w(t) = W (t − t0)ζ with
ζ = Z−1(0)z0, the solution of the system (6) with z(t0) = z0 is:

z(t) = Z (t − t0)ζ.
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Constructing the learned controller

z1(t)

z2(t)

z(0)
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Constructing the learned controller

z1(t)

z2(t)

z(0)

z(τ)

1. For t ∈ [0, τ),
w(t) = W (t)ζ(0) with
ζ(0) = Z−1(0)z(0)
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Constructing the learned controller

z1(t)

z2(t)

z(0)

z(τ)

z(2τ)

1. For t ∈ [0, τ),
w(t) = W (t)ζ(0) with
ζ(0) = Z−1(0)z(0)

2. For t ∈ [τ, 2τ),
w(t) = W (t − τ)ζ(1) with
ζ(1) = Z−1(0)z(τ)
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Constructing the learned controller

z1(t)

z2(t)

z(0)

z(τ)

z(2τ)

1. For t ∈ [0, τ),
w(t) = W (t)ζ(0) with
ζ(0) = Z−1(0)z(0)

2. For t ∈ [τ, 2τ),
w(t) = W (t − τ)ζ(1) with
ζ(1) = Z−1(0)z(τ)

3. For t ∈ [2τ, 3τ),
w(t) = W (t − 2τ)ζ(2) with
ζ(2) = Z−1(0)z(2τ)
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Constructing the learned controller

We apply the following preliminary controller:

u(t) = β−1(z(t))(−α(z(t)) + w(t, z(t))), (9)

to bring the system (1) to the form y (n) = w and use the control law:

w(t, z(t)) = W (t − pτ)Z−1(t − pτ)z(t) = K (t)z(t), (10)

for all t ∈ [pτ, (p + 1)τ) and p ∈ N0.

Lemma (Minimal length of demonstrations for stability)

Suppose a set De = {(z i ,w i)}n+1
i=1 of solutions with length τ ∈ R+ is

generated by the system (6) in closed loop with an asymptotically
stabilizing controller u = κ(z).

Assume that {z i(t)}n+1
i=1 is affinely independent for all t ∈ [0, τ ].

Then, there is τ̄ ∈ R+ such that for all τ ≥ τ̄ , the origin of the system (6)
in closed loop with the controller in (10) is uniformly exponentially stable.
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Learning from demonstrations when

dynamics are unknown (using data-driven control)
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Data-driven control and LfD for unknown systems

Previous assumptions: know De = {(z i ,w i)}n+1
i=1 and functions α and β.

The data-driven control from [6] consists of two components:
state estimator and dynamic controller.

We use the state estimator from [6] to:

▶ estimate the set D̂e = {(ẑ is , ŵ i
s)}n+1

i=1 from the given data Ds = {y is}n+1
i=1 ;

▶ provide estimates of ẑs and ŵs to the dynamic controller.

The dynamic controller from [6] tracks the virtual input w from the
learned controller (10) without knowing α and β.

[6] Fraile, Marchi, and Tabuada, 2020, “Data-driven Stabilization of SISO Feedback Linearizable Systems”
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s)}n+1

i=1 from the given data Ds = {y is}n+1
i=1 ;
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The main result

Theorem
Consider an unknown SISO system (1) where h has a relative degree n.

Let T be the sampling time and τ be the demonstration length.

Suppose we are given Ds = {y i
s}n+1

i=1 generated by the system (1) in
closed loop with a stabilizing expert. and the state estimator from [6] is

used to construct D̂e =
{(

ẑ is , ŵ
i
s

)}n+1

i=1
.

Then, there exist T̄ ∈ R+ and τ̄ ∈ R+ so that, for any T ∈ [0, T̄ ] and any
τ ≥ τ̄ , the dynamic controller, based on the learned controller (10), renders
the closed-loop solutions bounded and limt→∞ x(t) = 0.
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Conclusion

We have extended a methodology in [5] for constructing a stabilizing
controller from expert demonstrations to unknown SISO systems.

Compared to machine-learning approaches, this methodology requires
few demonstrations (i.e., the minimal number of demonstrations is
n + 1) and provides formal stability guarantees.

As part of future work, we plan to:
▶ apply a similar methodology to learn control of unknown MIMO

systems;
▶ experimentally verify this methodology using the testbed with Crazyflie

quadrotors we have in our laboratory.

[5] Sultangazin et al., 2021, Watch and Learn: Learning to control feedback linearizable systems from expert demonstrations
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