
ALGORITHMS FOR DISTRIBUTED MODEL PREDICTIVE
CONTROL

Lucas Fraile
UID: 505034889

lucasfrailev@gmail.com

Alimzhan Sultangazin
UID: 005035952

asultangazin@ucla.edu

January 5, 2022

ABSTRACT

In this project we will consider three state-of-the-art algorithms for solving distributed model pre-
dictive control (DMPC) problems. The first algorithm utilizes dual decomposition and accelerated
gradient methods in a distributed fashion. The second algorithm uses alternating direction method of
multipliers (ADMM) on the primal problem. We implement the three aforementioned algorithms
and compare their results with those given by CVX, which we have taken to be our benchmark. In
this report, we present these results along with the discussion of the challenges we have encountered
when implementing these algorithms.

1 Introduction

In the recent years, distributed control of large-scale systems has become an increasingly popular topic, because often
centralized solutions can be inefficient (due to the large amount of data or the network topology) or inapplicable (the
system does not have a central node). Distributed model predictive control (DMPC) is the version of a well-known
MPC scheme modified to control the network of systems by using the local controllers at each system.

Model predictive control (MPC) is an optimization-based method, which calculates a sequence of inputs that drives the
system to the desired state, while taking into account the dynamics and the set of imposed constraints. Typically, this is
expressed as follows:

minimize
x, u

1

2

N−1∑
t=0

(xTt Qxt + uTt Rut)

subject to (xt, ut) ∈ X × U , t = 0, . . . , N − 1,

xt+1 = Axt +But, t = 0, . . . , N − 2,

(1)

where Q and R are positive semi-definite costs; (A,B) describe the system dynamics; X (resp. U) is the set of states
(resp. inputs) satisfying the imposed constraints; and x and u are the sequences of states xt and ut, respectively [1].

In DMPC, the entire system is divided into subsystems and each subsystem is represented by a node in the network.
Moreover, each subsystem possesses a corresponding local controller. The cost in (1) is optimized by these local
controllers. A local controller at a certain node can physically influence subsystems at other nodes through coupled
dynamics and constraints. Therefore, for correct performance, communication between local controllers is required [2].
Each local controller must decide which input to feed into the system, based on the information it receives from its
neighbors (i.e., the subsystems with which its local subsystem is coupled with via either dynamics or constraints).

The application of different distributed optimization algorithms was suggested in the DMPC literature. In [3], an
accelerated gradient method is used on distributed MPC problem that is reformulated using dual decomposition. The
authors of this paper argue that this brings about improvement in the convergence rate, in comparison with previous
works that used regular gradient-based methods. In [2], the DMPC problem is reformulated as a global consensus
problem and, then, the alternating direction method of multipliers (ADMM) is used to solve the problem in a distributed

ALGORITHMS FOR DISTRIBUTED MODEL PREDICTIVE CONTROL - JANUARY 5, 2022

Figure 1: Schematic of the quadruple-tank process. The water levels in tanks 1 and 4 are controlled with pump 1, while
the water levels in tanks 2 and 3 are controlled with pump 3. Water also falls down from the upper tanks into the lower
tanks.

fashion. ADMM is applied to both the primal and the dual problem. It is said that this algorithm results in a significant
reduction of the data exchange. For this project, we have chosen to implement the algorithm described in [3] and
the primal ADMM described in [2]. These algorithms were tested on the quadruple-tank process system from [4].
The main metrics we have seen in the literature are the improvement of the convergence rate and the reduction of the
communication load [1, 2]. Here, due to the time limitations, we mainly focus on the convergence exhibited by the
algorithms (i.e., how close their solution gets to the chosen benchmark).

2 Benchmark

In this section, we describe the control benchmark that will be used to test the implemented algorithms. This benchmark
system was originally proposed by Johansson in [4] and has been since widely used for testing of distributed control
algorithms. As shown in Figure 1, the four tanks are filled from a storage reservoir below by means of two pumps. We
denote the amount of water supplied by these pumps to the valves 1 and 2 by q1 and q2, respectively. Then, at each
of the three-way valves, the water flow is divided based on parameters γ1, γ2 ∈ (0, 1) (e.g., the flow into Tank 1 is
given by γ1q1 and the flow into Tank 4 is given by (1− γ2)q1). We also denote the water level in Tank i by hi for all
i ∈ {1, 2, 3, 4}. This system has non-linear dynamics, but these dynamics can be linearized at an operating point [5].
We take this operating point to be :

h0
1 = 0.65 h0

2 = 0.66 h0
3 = 0.65 h0

4 = 0.66

q0
1 = 1.63 q0

2 = 2.00

We define the deviation variables:

xi = hi − h0
i , (2)

vi = qi − q0
i , ∀i ∈ {1, 2, 3, 4}, (3)

2

ALGORITHMS FOR DISTRIBUTED MODEL PREDICTIVE CONTROL - JANUARY 5, 2022

and thus obtain the linearized state-space equation for the continuous dynamics with pump flows as inputs:

˙x1

x2

x3

x4

 =

− 1
τ1

0 1
τ1

0

0 − 1
τ2

0 1
τ4

0 0 − 1
τ3

0

0 0 0 − 1
τ4

x1

x2

x3

x4

+

γ1
S 0
0 γ2

S

0 (1−γ2)
S

(1−γ1)
S 0

[v1

v2

]
, (4)

where S = 0.06 is the cross section of the tanks and τi for i ∈ {1, 2, 3, 4} is the time constant for Tank i. In this model,
we keep the valve parameters constant at γ1 = 0.3 and γ2 = 0.4. Based on this model, we obtain a discrete-time model
by using Tustin’s method, as recommended in [5]. We further partition the resulting system into two subsystems: one
consisting of tanks 1 and 3, the other - of tanks 2 and 4. We pair input from pump 2 v2 with subsystem 1 and input from
pump 1 v1 with subsystem 2 and denote them by u1 and u2, respectively. In other words, the local MPC controller of
subsystem 1 computes u1 and the local MPC controller of subsystem 2 computes u2. The resulting dynamics for two
subsystems are:

xsub1(t+ 1) ,

[
x1(t+ 1)
x3(t+ 1)

]
= A11

[
x1(t)
x3(t)

]
+B11u1(t) +B12u2(t) (5)

xsub2(t+ 1) ,

[
x2(t+ 1)
x4(t+ 1)

]
= A22

[
x2(t)
x4(t)

]
+B21u1(t) +B22u2(t) (6)

Note how the dynamics of two subsystems are coupled via two inputs. This is the reason why distributed MPC is
needed.

The control problem solved by MPC will be the following. We would like states x1 and x3 to reach a value of
r1 = r3 = 0.35 (recall that the states define a deviation from the linearization level). To define the references for the
inputs, ur1 and ur2, we calculate the steady-state input that would keep the states of subsystem 1 at x1 = x3 = 0.35.
To define the references for the state of subsystem 2, r2 and r3, we calculate the steady state of subsystem 2 for inputs
ur1 and ur2. Upon getting these values, we can define the global cost of our MPC problem to be:

J(x, u) =

N−1∑
t=0

||xsub1(t)− rsub1||Q1
+ ||xsub2(t)− rsub2||Q2

+ ||u1(t)− ur1||R1
+ ||u2(t)− ur2||R2

, (7)

where x(t) = [x1(t) x2(t) x3(t) x4(t)]
T , r = [r1 r2 r3 r4]

T , and Q = I , R = 0.01 are cost functions for
the states and the inputs, respectively

In addition, we have lower and upper bounds on the states (denoted by xi,max and xi,min for all i ∈ {1, 2, 3, 4}) and
the inputs (denoted by ui,max and ui,min for all i ∈ {1, 2, 3, 4}), given by the volume of the tanks and power of the
pumps. For all t ≥ 0, the following is true:

xi,min ≤ xi(t) ≤ xi,max (8)
ui,min ≤ ui(t) ≤ ui,max (9)

3 Algorithm Overview

In this section, we describe in detail the algorithms that we have implemented as a part of this project to solve the
problem of distributed MPC. These algorithms will be applied to the benchmark described in Section 2. Recall, that
we have decided to consider the algorithm from [3], based on accelerated gradient method, and the primal ADMM
algorithm from [2].

Before we can use either of those algorithms, we are required to bring them to a form, where all the variables are
stacked into a single vector. Therefore, the optimization problem in (1) is reformulated into:

minimize
y

1

2
yTHy + gT y

subject to Aeqy = Beq,

Aineqy ≤ Bineq,

(10)

3

ALGORITHMS FOR DISTRIBUTED MODEL PREDICTIVE CONTROL - JANUARY 5, 2022

where y(t) =
[
yT1 yT2 ... yTM

]T
and H = diag(H1, ...,HM). Each of the yi and Hi corresponds to a certain

subsystem and has the following structure:

yi =

ui(0)
xi(0)
ui(1)
xi(1)

...
ui(N − 1)
xi(N − 1)

∈ RN(ni+mi), Hi =

Ri 0 0 . . . 0
0 Qi 0 . . . 0
...

...
.

...
0 . . . 0 Ri 0
0 0 Qi

 ∈ RN(ni+mi)×N(ni+mi), (11)

where Qi ∈ Rni×ni and Ri ∈ Rmi×mi are positive definite cost matrices for the state and input of subsystem i,
respectively. The linear term g has the same structure as y and is defined by the reference points r and ur.

The equality constraints are derived from the dynamics of the system. The inequality constraints are given by the lower
and upper bounds on the states and inputs. Due to the space limitations in this report, we will not be discussing the
derivation of these matrices, but will only give their general structure:

Aeq = [Aeq,ij] ∈ R((ni+mi)+(N−1)ni)×(N(ni+mi)), (12)

Aineq = [Aineq,ij] ∈ R(2N(ni+mi))×(N(ni+mi)) (13)

.

3.1 Accelerated gradient method and dual decomposition for DMPC

Dual decomposition methods have been widely applied to distributed MPC problems (e.g., see [6]). However, they
were previously largely based on regular gradient descent methods that converge at a rate O(1

k). The novelty of work in
[3] lies in using the accelerated gradient method. This method has a tight lower bound of O(1

k2) on the convergence
rate [7].

In [3], the authors proceed by finding a dual problem of (10) and apply accelerated gradient method to it. Before we
start describing the algorithm, let us define:

A =

[
Aeq
Aineq

]
, B =

[
Beq
Bineq

]
. (14)

The set of constraints that unit i is responsible for is given by Li. Now, we can define two sets of neighbors to
computational unit i:

Ni = {j ∈ {1, ...,M}|∃l ∈ Li s.t. alj 6= 0} (15)
Mi = {j ∈ {1, ...,M}|∃l ∈ Lj s.t. ali 6= 0} (16)

We define a dual variable z =
[
λT µT

]T
, where λ corresponds to the equality constraints and µ corresponds to the

inequality constraints. For simplicity of notation, let us denote the dimensions of the constraints as follows Aeq ∈ Rq×n
and Aineq ∈ R(s−q)×n. The feasibility constraints on the dual variable are as follows:

Z =

{
z = (λT , µT)T

∣∣∣ zl ∈ R, l = {1, ..., q}
zl ≥ 0, l = {q + 1, ..., s}

}
(17)

The distributed algorithm based on accelerated gradient descent solves the following dual problem:

supz∈Z

{
−1

2
(AT z + g)TH−1(AT z + g)− BT z

}
(18)

that was derived using dual decomposition.

4

ALGORITHMS FOR DISTRIBUTED MODEL PREDICTIVE CONTROL - JANUARY 5, 2022

The algorithm is given as follows:

Algorithm 1: Distributed accelerated gradient algorithm

Initialize λ0 = λ−1, µ0 = µ−1, y0 = y−1 ;
For every node i:
for k ≥ 0 do

1) Primal update:
xki = −H−1

i (−ATi zk − gi);
x̄ki = xki + k−1

k+2 (xki − x
k−1
i);

2) Send x̄ki to each j ∈Mi, receive x̄kj from each j ∈ Ni ;
3) Dual update:
λk+1
l = λkl + k−1

k+2 (λkl − λ
k−1
l) + 1

L (aTl x̄
k − bl),

where l ∈ Li and 0 ≤ l ≤ q
µk+1
l = max{0, µkl + k−1

k+2 (µkl − µ
k−1
l) + 1

L (aTl x̄
k − bl)},

where l ∈ Li and q + 1 ≤ l ≤ s
4) Send {λk+1

l }l∈Li
, {µk+1

l }l∈Li
to each j ∈ Ni, receive {λk+1

l }∈Lj
, {µk+1

l }l∈Lj
from each j ∈Mi

end

3.2 Primal ADMM for DMPC

Before we discuss how primal ADMM was implemented for DMPC, let us define the notion of neighborhood that they
used in [2]. If the dynamics are given by block matrices A = [Aij], B = [Bij] with i, j ∈ {1, 2, ...,M}, then the set of
neighbors Ni andMi is defined as:

Ni = {j ∈ S|Aij 6= 0 or Bij 6= 0} (19)
Mi = {j ∈ S|i ∈ Nj} (20)

Then, the optimization problem in (10) is reformulated into the consensus form, where each subsystem has a local
variable yi =

[
(yi1)T (yi2)T . . . (yiN)T

]T
, where yij is the local copy of yj in subsystem i.

We introduce a consensus constraint to coordinate the results of optimizations at each local controller:

yi − ȳi = 0, (21)

where:

ȳi =
[
(ȳi1)T (ȳi2)T . . . (ȳiN)T

]T
(22)

ȳi =
1

|Mi|
∑
j∈Mi

yji (23)

The local copies of the variable yi are to be averaged and transmitted to the network to find ȳi. This algorithm can be
seen as consensus between the local optimizations and the global average.

The local optimization problem solved at each node is given by minimization of the augmented Lagrangian:

minimize
yi

1

2
(yii)

THyii + (γi)T (yi − ȳi) +
ρ

2
||yi − ȳi||22

subject to
∑
j∈Ni

Aeq,ijy
i
j = Beq,i,

Aineq,iiy
i
i ≤ Bineq,i,

(24)

where γi is the Lagrange multiplier for the consensus constraint and ρ is the penalty coefficient.

5

ALGORITHMS FOR DISTRIBUTED MODEL PREDICTIVE CONTROL - JANUARY 5, 2022

Let us denote the optimal solution of (24) by (yi)+. The algorithm is given as follows:

Algorithm 2: Primal ADMM

Initialize γi = 0 and ȳi = 0 ;
For every node i:
for k ≥ 0 do

1) Calculate (yi)+ by solving (24);
2) Send (yij)

+ to all j ∈ Ni;
3) Calculate ȳ+

i by using (23);
4) Send (ȳi)

+ to all j ∈Mi ;
5) Stack up (ȳi)+ according to (22) ;
6) Update (γ)+ = γi + ρ((yi)+ − (ȳi)+)

end

3.3 Dual ADMM for DMPC

We can formulate the dual problem to (10):

minimize
z

1

2
zTAH−1AT y + BT z

subject to µi ≥ 0, ∀i ∈ {1, ...,M},
(25)

where A =
[
AT1 ... ATM

]T
, B =

[
BT1 ... BTM

]T
and z =

[
zT1 ... zTM

]T
with:

Ai =
[
ATeq,i ATineq,i

]T
(26)

Bi =
[
BTeq,i BTineq,i

]T
(27)

zi =
[
λTi µTi .

]
(28)

These partitions correspond to equality and inequality constraints.

We define a matrix Ĥ = AH−1AT . It is clear that this matrix is not block-diagonal. However, it has an inherent
structure due to the sparsity patterns of A and H−1. It was determined in [2] that block Ĥij is zero if Ni ∩Nj = ∅. It
can also be seen that Ĥ is positive semidefinite and symmetric.

In the dual problem, the set of neighbors for node i is given by N̂i = {j ∈ {1, ...,M}|Ni ∩ Nj 6= ∅}. To solve (25),
we must divide it into M local subproblems. Based on the definition of neighbors in the dual problem, we can see that
the optimization variable zi at each subsystem i is given by:

zi = [zij]j∈N̂i
, (29)

where zi ∈ Rq̂i , q̂i =
∑
j∈N̂i

sj and zij being the local copy of zj in i.

In terms of implementation, using Ĥ as it was defined earlier posed a problem because, due to numerical errors, it was
no longer positive semidefinite. To rectify this, we solved the following optimization problem to find Ĥest, the closest
positive semidefinite matrix to Ĥ:

minimize
Ĥest

||Ĥest − Ĥ||F

subject to Ĥest ≥ 0.

(30)

However, the solution of this problem no longer had the sparsity pattern of Ĥ . As a result, this sparsity pattern had to
be enforced on Ĥest to give Ĥpd. By manual check, it was determined that Ĥpd was positive semidefinite. Further in
the report, when Ĥ is used, it is implied that in the actual implementation the positive semidefinite matrix Ĥpd is being
used.

6

ALGORITHMS FOR DISTRIBUTED MODEL PREDICTIVE CONTROL - JANUARY 5, 2022

Next, to partition problem in (25) into local problems, the following feasibility problem was solved for Ĥi:

Ĥi ≥ 0, (31)∑
i

W iĤi(W i)T = Ĥ, (32)

where W i ∈ Rs×q̂i is constructed by removing from the identity matrix all block columns corresponding to agents
j 6∈ N̂i.
Then, the local optimization problems are given by:

minimize
zi

1

2
(zi)T Ĥizi + BTi zii + (γ̂i)T (zi − z̄i) +

ρ

2
||zi − z̄i||22

subject to µi ≥ 0.

(33)

We denote the optimal solution of this problem by (zi)+. The algorithm is given as follows:

Algorithm 3: Dual ADMM

Initialize γ̂i = 0 and z̄i = 0 ;
For every node i:
for k ≥ 0 do

1) Calculate (zi)+ by solving (33);
2) Send (zij)

+ to all j ∈ N̂i;
3) Calculate z̄+

i = 1
|N̂i|

∑
j∈N̂i

(zji)
+;

4) Send (z̄i)
+ to all j ∈ Ni ;

5) Stack up (z̄i)+ = [(z̄j)
+]j∈N̄i

;
6) Update (γ̂)+ = γ̂i + ρ((zi)+ − (z̄i)+)

end

4 Simulation results and discussion

The three aforementioned algorithms were implemented in MATLAB. To make the simulation closer to reality, the
execution of local optimization at the nodes was parallelized. The optimization of augmented Lagrangian in primal and
dual ADMM was implemented using the built-in function quad_prog. This has resulted in a considerable improvement
in performance, as opposed to using CVX for optimization, as the overhead was reduced greatly. CVX was still used to
find Ĥi in the dual ADMM.

Figure 2 shows the convergence , from the top left corner towards the center of the figure, of the accelerated gradient
method as the number of iterations grow. It can be seen that the state progressively gets closer to the optimal solution,
which we consider is given by CVX (shown with punctuated line). The solution given in the first step reaches the
set-point in three seconds yet does not respect the dynamics of the system, and in every iteration thereafter the solution
gets closer to the feasible set.

Figure 3 compares the control performance of the Primal ADMM method in [2] against CVX (shown with punctuated
line), which we consider to be the optimal solution. Sub-optimality is expected as this method utilizes consensus among
local agents with limited global information. The algorithms were run with a receding horizon of N = 20.

Table 1 shows the comparison in running times between accelerated gradient method and primal ADMM. These running
times are average running times over 100 optimizations. One can observe an increase in the running time with the
increase of the receding horizon N . This is reasonable as the dimensionality of the optimization problem is increased.
It is worth noting how the average time taken per optimization for Primal ADMM remains almost constant until the
horizon jumps from 50 to 100 steps, this indicates that for this optimization problem, the time it takes to solve it depends
primarily on the overhead in parallelization for horizons between 3 to 100 and on the size of the problem thereafter.

Clearly, primal ADMM algorithm converges to the solution faster than AGD. The comprehensive results for dual
ADMM were not produced due to the time constraints. The main bottleneck of simulating dual ADMM lies in generation
of matrices Ĥi.

Both algorithms in [3] and [2] use some variant of the matrix AH−1AT . We have found in our simulations that this
matrix is ill-conditioned and this often cause accumulation of error and divergence. This is due to the fact that typically

7

ALGORITHMS FOR DISTRIBUTED MODEL PREDICTIVE CONTROL - JANUARY 5, 2022

2 4 6 8 10 12 14 16 18 20

t

0

x
1

Figure 2: The evolution of the state x1 with the increasing number of iterations dual-primal iterations in [3]

2 4 6 8 10 12 14 16 18 20

t

0

x
1

Figure 3: Performance comparison between CVX and the Primal ADMM as presented in [2]

8

ALGORITHMS FOR DISTRIBUTED MODEL PREDICTIVE CONTROL - JANUARY 5, 2022

Table 1: Comparison of running times of accelerated gradient method and primal ADMM algorithms
XXXXXXXXXAlgorithm

N 3 5 10 20 50 100 200

AGD [3] * * * 8592 >8592 >8592 >8592
Primal ADMM [2] 0.3880 0.3890 0.3899 0.3913 0.3803 0.4793 0.7175

in DMPC the number of constraints is greater than the number of variables and AH−1AT has rank lower or equal than
the number of variables. The simulation results in [3] were performed exclusively on problems where the number of
constraints was less than the number of variables, avoiding this problem and, we believe, not reflecting the real-life
applications. The benchmark used was chosen with the aim of testing these algorithms on a real world DMPC problem.
That being said, we also understand that given the small amount of subsystems in the benchmark used these algorithms
were not able to benefit fully from their decentralized aspects.

References

[1] P. Giselsson. A generalized distributed accelerated gradient method for distributed model predictive control with
iteration complexity bounds. In 2013 American Control Conference, pages 327–333, June 2013.

[2] R. Rostami, G. Costantini, and D. Görges. Admm-based distributed model predictive control: Primal and dual
approaches. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages 6598–6603, Dec 2017.

[3] Pontus Giselsson, Minh Dang Doan, Tamás Keviczky, Bart De Schutter, and Anders Rantzer. Accelerated gradient
methods and dual decomposition in distributed model predictive control. Automatica, 49(3):829 – 833, 2013.

[4] K. H. Johansson. The quadruple-tank process: a multivariable laboratory process with an adjustable zero. IEEE
Transactions on Control Systems Technology, 8(3):456–465, May 2000.

[5] I. Alvarado, D. Limon, D. Muñoz de la Peña, J.M. Maestre, M.A. Ridao, H. Scheu, W. Marquardt, R.R. Negenborn,
B. De Schutter, F. Valencia, and J. Espinosa. A comparative analysis of distributed mpc techniques applied to the
hd-mpc four-tank benchmark. Journal of Process Control, 21(5):800 – 815, 2011. Special Issue on Hierarchical
and Distributed Model Predictive Control.

[6] Dang Doan, Tamás Keviczky, Ion Necoara, Moritz Diehl, and Bart De Schutter. A distributed version of han’s
method for dmpc of dynamically coupled systems with coupled constraints. IFAC Proceedings Volumes, 42(20):240
– 245, 2009. 1st IFAC Workshop on Estimation and Control of Networked Systems.

[7] Yu. Nesterov. A method of solving a convex programming problem with convergence rate O(1/k2). Technical
report, Reports of the Academy of Sciences of the USSR, 1983.

9

	Introduction
	Benchmark
	Algorithm Overview
	Accelerated gradient method and dual decomposition for DMPC
	Primal ADMM for DMPC
	Dual ADMM for DMPC

	Simulation results and discussion

