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1 Introduction

Practitioners of machine learning have achieved impressive results in applying reinforcement learning
(RL) algorithms to the control of dynamical systems. We would like to investigate the performance
of some of these algorithms that draw inspiration established classical control methods. After all, for
most real-world systems, we can assume some prior knowledge of the system. Furthermore, classical
methods provide the added benefit of performance guarantees, which is particularly important in
safety-critical systems.

Our objective is to explore the trade-offs between different learning approaches to controlling mechan-
ical systems. These systems typically admit a range of classical algorithms, however applying these
algorithms requires substantial domain-specific knowledge. Furthermore, techniques such as optimal
control may require significant on-line computational resources, precluding the solution of control
tasks with a high degree of model-complexity. On the other hand, model-free reinforcement learning
offers the ability to control a dynamical system without any prior knowledge at all. Some methods,
such of those we will investigate, also allow for the computational cost of determining a control policy
to be shifted to an off-line training phase. This, in turn, reduces the computational requirements of the
controller at run-time. Unfortunately, RL approaches toward controlling physical systems are subject
to several well-known disadvantages including high sample-complexity, significant computational
requirements, and a lack of any formal performance guarantees.

Our objective is to obtain a qualitative idea of the performance trade-offs inherent in applying these
learning-based control strategies to standard control problems, solvable via classical techniques. In
particular, we have identified two RL algorithms which bridge the extremes of naive RL, with it’s
inherent computational complexity, and classical algorithms, which become more difficult to apply as
the complexity the dynamical system increases.

In this work, we study the performance of Model-Based Deep RL (MB-DRL) [1]] and Generative
Adversarial Imitation Learning (GAIL) [2] in mechanical environments from OpenAl Gym [3]].
MB-DRL is similar to classical model-predictive control except that the dynamics are approximated
with a neural network, while GAIL tries to emulate an expert controller from demonstrations.

For the limited number of environments we tested, we conclude that GAIL outperforms MB-DR. In
the case of the model-based algorithm we believe that we can improve its performance by changing
the way the optimal action is chosen and by improving the policy with model-free methods.

1.1 OpenAl Gym

We decided to interface the chosen algorithms with two environments from Open Al Gym [3] -
Cart-pole environment and LunarLander environment. Interestingly, both of these environments can
be solved using classical control methods. These environments are used to train both of the algorithms
and, then, to test their performance. We have slightly modified each of the environments before using
them. Our version of the cart-pole environment is modified so that action space is continuous rather
than discrete. Our version of the LunarLander environment returns an extended version of the state
(22 state variables instead of 8).
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2 Model-Based Deep Reinforcement Learning (MB-DRL)

2.1 Description

The method we describe in this section, model-based deep reinforcement learning with model-free
tuning, was first described in [1]]. According to the authors [1], the main benefit of this method, in
comparison to model-free reinforcement learning, is its sample complexity. The main building blocks
of this method are the neural network modelling the environment and the model predictive controller
(MPC) maximizing the reward. While in the original paper the method was tested on MuJoCo
benchmarks, we empirically demonstrate its behavior with classical control problems. Finally, for
one of the environments, the model-based controller is used to initialize a model-free controller with
a goal of reducing the sample complexity of a model-free algorithm.

2.1.1 Initial model training

The first step of the method is to collect the initial training data-set D, while executing a random

policy. This initial data-set will be used to train a neural network fg (st, a;) that approximates the
dynamics f of the system:

St41 = 8¢ + f(s¢,a¢) (D

It is collected by initializing the system according to some (arbitrary) initial state distribution
s0 ~ p(so) and recording the resulting trajectories 7 = {so, ag, 1, ..., ST—2, a1y, ST—1 . (Remark:
the agent will not try to emulate the trajectories that this data-set contains). We pre-process each
trajectory by splitting it into tuples (s, at, S¢+1), where s; and a; are the observed state and action at
time-step ¢ and s is the next observed state. For each tuple, the training set input and corresponding
output are (s¢,a;) and s;11 — Sq, respectively. To increase model robustness, we add normally-
distributed noise to the training data .

The dynamics model is trained by minimizing the following error:
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using stochastic gradient descent.

2.1.2 Model-based control

The learned model is used, together with a random-sampling shooting method MPC, to implement
a policy. The MPC is supposed to determine what sequence of actions of length H provides the
greatest estimated cumulative reward (using the trained model approximator), that is:
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where AgH) denotes an H-length sequence of actions. Then, the policy is to execute the first action
of the best sequence. In the experiments, this problem is solved by randomly sampling N sequences
and picking the one leading to the best estimated cumulative reward.

We can improve the performance of the model-based learning by gathering additional training
data using MPC policy and adding it to the original data-set. Similarly to [4], the on-policy data
aggregation reduces the mismatch between the distribution of the data and the distribution of the
model-based controller’s distribution. We collect this additional data by using MPC along with the
previously trained dynamics model. Afterwards, the neural network is trained further using this
augmented data-set. This process is then iterated a number of times. The full process is described by
Algorithm T} taken from [[1I].

Finally, to refine the policy, the authors in [1] suggest training a neural network to imitate the MPC
policy and to use it as a starting point to jump-start a model-free algorithm.



Algorithm 1 Model-based Reinforcement Learning

gather dataset D 4 v p of trajectories using a random policy
Initialize empty dataset Dy, and fy
for k < 1 to max_iter do
train fy using data from Dranp and Drp,
fort < 1toT do
get agent’s current state sy

use fy to estimate optimal action sequence AIEH) (see (1))

execute the first action a; from optimal AEH)

add (St7 CLt> to DRL
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Figure 1: Cart Pole environment. a) Average rewards when controlled by MPC using a neural
network as approximate dynamics model depending on neural network layer width. The red dashed
line represents average reward of MPC + actual dynamics. b) Distribution of rewards for the MPC
controller with approximate dynamics model using a two-layer neural network with layer width 64.

2.2 [Experiments

In this section, we report the experiments we conducted on our implementation of the algorithm
described above. Like in the alternative method we implemented, we used two OpenAl-gym
environments, the CartPole and the continuous version of the LunarLander, to range from a simple
mechanical system to a more complicated environment that includes discontinuities in the dynamics
and reward.

2.2.1 CartPole

For experiments on this environment, we modified the reward function to give a reward proportional
to the deviation of the angle of the pole from the vertical. Although we attempted to penalize the
deviation of the cart’s horizontal position from the center, we have empirically found that better
results were obtained by not penalizing it at all. This may be a consequence of the limited horizon
of the used MPC policy. Unfortunately, increasing the horizon and the number of sampled action
sequences rapidly increases the computational complexity of the MPC, limiting us to small numbers
for both.

To approximate the environment dynamics, we have used two-layer fully connected networks of
various layer size. From Figure [Ta] we can see that the performance of MPC with most of the
approximate dynamics models is comparable to that of MPC with the actual dynamics model,
which we took as the baseline. Since the cumulative reward has a high variance over the individual
experiments, some neural network configurations have better empirical average than the baseline
empirical average. However, this still allows us to establish that the neural network approximation
for the dynamics is sufficient for MPC policy on CartPole example.
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Figure 2: Lunar Lander environment. a) Average rewards when controlled by MPC using a neural
network as approximate dynamics model depending on neural network layer width. The red dashed
line represents average reward of MPC + actual dynamics. b) Distribution of rewards for the MPC
controller with approximate dynamics model using a two-layer neural network with layer width 512.

Figure[Tb]shows the empirical distribution of cumulative rewards for the MPC with a two-layer neural
network with layer width 64. We use this configuration as an example because it has empirically
shown the best performance (see Figure[Ta). Distributions for the other configurations have a similar
profile.

Although the system’s horizontal position will eventually drift outside the acceptable boundaries, as
seen in Figure[Ta]this occurs only after thousands of time steps, well beyond the threshold where the
task is considered solved.

2.2.2 LunarLander

We tested the model-based algorithm on a modified version of OpenAl-gym’s Lunar Lander envi-
ronment. The modifications were minor and mostly made for technical reasons. We expect that
the obtained policies would be able to perform comparably on an unmodified environment. For
the first change We increased the observation space to include 2 binary variables that are used in
the environment to indicate a successful or unsuccessful episode (implying a +100 or -100 reward),
primarily needed to be able to run the MPC controller and enable it to correctly predict the end of
episode reward (12 more variables are included in the state, but these are only needed to run the
MPC with the true model for comparisons). We also changed the successful episode termination
condition so that when the spaceship’s legs are touching the ground and the velocity is below a small
threshold, the episode terminates successfully. The original condition requires the spaceship to come
to a full stop. The change was made because the MPC algorithm searches among random sequences
of actions, so even when the spaceship landed correctly, the thrusters would (with overwhelming
probability) never be exactly zero for a sufficiently long stretch of time and the episode would never
terminate.

For approximating LunarLander environment, we have used both two-layer and three-layer fully
connected networks of various layer size. From Figure [Ia] we can see that the performance of MPC
with the approximate dynamics models is mostly worse to that of MPC with the actual dynamics
model, which we took as the baseline. This can be explained by an increased state-space and
action-space complexity of the LunarLander environment. Therefore, using the neural network
approximation in this case leads to a loss in performance quality. Moreover, we can see that neither
MPC with neural network approximation nor MPC using actual dynamics achieves positive reward,
meaning that they were unable to successfully land the vehicle. We suspect that this is due to a
myopic nature of the small-horizon limited-sequence random sampling method we employ.

Figure[Tb|shows the empirical distribution of cumulative rewards for the MPC with a two-layer neural
network with layer width 512. We use this configuration as an example because it has empirically
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Figure 3: Average reward of a randomly initialized policy and of a model-based initialized policy in
LunarLander environment over TRPO iterations.

shown the best performance (see Figure [Ta). We have to note that most trials have had a reward
around -100, which is a result comparable to the baseline.

Since the performance of model-based reinforcement learning in LunarLander environment was
unsatisfactory, we attempted to improve the policy by model-free fine tuning, as suggested in [[1]].
First, we train a neural network to imitate our MPC policy and use it as a starting point in a trust
region policy optimization (TRPO) algorithm [5]. We use the a third-party implementation of TRPO
algorithm from [6]]. In order to see if this resulted in improvement in sample complexity, we also use
TRPO to train a randomly initialized policy. In our TRPO experiments we used a policy network
with 2 layers with 64 neurons each, producing as output the mean and standard deviation of a normal
distribution that is used to sample the actual action. Empirically, the best performing batch size (how
many time steps are simulated before updating the network) was 5000. Both approaches have resulted
in the agent receiving a positive cumulative reward, indicating satisfactory performance.

The results (shown in Fig[3) are certainly curious. While the model-based initialized policy appears to
be worse than the randomly initialized policy at the beginning (indicating a worse sample complexity),
the relationship switches around 0.4M time steps of simulation, where the model-based initialized
policy rapidly increases in performance. This may indicate that the MPC policy was able to perform
well on a subset of the state space, but this “prior knowledge” could not be exploited until the rest of
the policy learned to reliably drive the system in this subspace.

3 Generative Adversarial Imitation Learning (GAIL)

3.1 Overview

The GAIL algorithm attempts to solve an imitation learning problem more efficiently than traditional
methods such as behavioral cloning and inverse reinforcement learning (IRL). While other solutions
to the IRL problem involve learning a candidate cost function, which is then used to determine
an optimal policy, GAIL bypasses this intermediate step, learning the policy directly from expert
demonstrations. It’s derivation, however, follows similar reasoning to that of other IRL solutions and
it is closely related to Generative Adversarial Networks (GANS).

3.2 Motivation

We are particularly interested in GAIL, and imitation learning more broadly, because it easily lends
itself to comparison against classical control algorithms. For both the cart-pole and lunar lander
systems, it is relatively easy to derive state-feedback controllers which stabilize either around a point
or trajectory. For example, the dynamics of the cart-pole system (neglecting friction) can be described
as follows:
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where M and m are the masses of the cart and pole respectively, [ is one-half the length of the pole,
and F is the external force applied laterally to the cart.

The most straight-forward way to control a nonlinear system is to linearize its dynamics about
one of its equilibrium points and design a controller for the approximate model. In this case,
(z,4,60,0) = (0,0,0,0), is an equilibrium point of the cart-pole system representing an upright
pendulum. Its corresponding linearization is:
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For any stabilizable linear system of the form = A% 4+ Bu, we can design an infinite-time linear
quadratic regulator (LQR) by solving the Algebraic Ricatti Equation:

ATP+PA—PBR'BTP+Q =0

for P. The matrix P defines a linear state feedback control law K = R~'B” P which minimizes
the following cost function V' = Zthl ] Quy + ul Ruy, where () weights the quadratic cost on the
states and R the weight on the input. By changing the ratio between the elements of ) and R one
can prioritize energy expenditure over settling time or vice versa.

We can stabilize the linearized cart-pole system by designing an LQR controller F' = K for some
positive semi-definite weight matrices ( and R. A well known result from control theory tells us
that as long and the state of our system does not deviate too much from its equilibrium point, this
linear controller will also stabilize the true system. This makes an LQR controller an excellent expert
for trajectory generation as the domain of the cart-pole’s state in the Open Al Gym environment lies
inside the domain in which the linearization is valid. The expert trajectories we generate for later
training include, for every step, a tuple composed of the state of the system together with the resulted
input I’ computed by the controller.

3.3 GAIL Description

Generative Adversarial Imitation Learning (GAIL) [2], is a model-free algorithm which is able to
learn a control policy from expert examples. The algorithm is in fact closely related to generative
adversarial networks (GANSs), and leverages their power in order to successfully learn controllers
for otherwise prohibitively complex environments. The intuition behind GAIL, which makes the
connection with GANS clear, is at follows: a neural network we will call Actor is trained to forge
controllers based on the expert trajectories, receiving the state of the system and returning an input
F; a second neural network we will call Discriminator is trained to differentiate between forged
trajectories created by the Actor and expert trajectories created through classical control methods; by
pitting the Actor and Discriminator against each other, both improve in their own tasks. If the Actor
improves enough that there is no significant differences between the inputs it generates and those
generated by the LQR controller, it is safe to expect the Actor to succeed in stabilizing the system.

More precisely, the Actor attempts to learn a policy m whose occupancy measure p, approximates
the occupancy measure p;,, of the expert’s policy 7, and the Discriminator’s job is to distinguish
between the two policies’ occupancy measures. Here, occupancy measure can be thought of as the
distribution of state-action pair encountered while navigating the environment with a certain policy.



In practice, both the parameterized policy g with weights 6 and the discriminative classifier D,, with
weights w are implemented by neural networks. The goal is to find the saddle point of the following
expression:

Ex[log(D(s,a))] + Ery [log(1 — D(s, a))] — AH (), 3)

where s € S and a € A are the state and action, respectively, and H (7) is the y-discounted causal
entropy of the policy 7. To achieve this, the algorithm alternates between an Adam gradient step on
w to increase (3)) with respect to the Discriminator D and proximal policy optimization (PPO) [[7] on
6 to decrease (3)) with respect to 7.

3.4 Experiments

As in the previous section, we implemented, trained and tested this learning algorithm on two Open
Al-gym environments, continuous input versions of the cart-pole and of the Lunar Lander. For the
cart-pole environment we obtained expert trajectories from an LQR controller as detailed in section
[3.2] For the second environment, we trained a policy using an implementation of the PPO algorithm
taken from the RL Baselines3 Zoo [8]. This was done to save time, however it is entirely possible to
derive a classical control policy for the Lunar Lander model as well.

3.4.1 Cart-pole

For experiments on this environment, we modified the action space to be the segment of the reals
between —10 and 10. We chose (Q = 101 where I is the rank 4 identity matrix and R = 2, to reflect
we care more about stabilization than control effort. This results in the expert controller u = K X
where K = [2.2361 4.6286 46.7714 15.3921]. As this expert is deterministic, we would query
it at every state encountered during the training.

The neural networks for both the Actor and Discriminator were given similar architectures, both fully
connected feed-forward networks with a single 2002200 hidden layer, the input and hidden layers
with ReLu and the output layers with hyperbolic tangent activation. The Actor’s output layer is scaled
by the maximum value actions can take.

We trained the GAIL algorithm for 400 epochs of 20 episodes each, we considered the training to
succeed if all twenty episodes in an epoch lasted 1500 steps 30 times. An episode would finish
whenever one of the state’s left the domain of the environment or when 1500 steps were reached
without doing so. This threshold was selected heuristically as experiments seemed to indicate that to
succeed the actor was forced to learn how to completely stabilize the system.

An example of the training curve is shown below:
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Figure 4: Average rewards given by cart-pole environment for 20 episodes per epoch.

We can see in the plots below how when tested this Actor succeeds in stabilizing the system for an
infinite number of steps as it reaches and equilibrium for both states and input.

3.4.2 Lunar Lander

We used a very similar setup for the Lunar Lander, where both the Actor and Discriminator were
represented by feed-forward networks consisting of two 200-node hidden layers interleaved with
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Figure 6: Action selected by the trained Actor corresponding to the states in Figure

ReLU non-linearities. The Actor network maps an 8§-dimensional state space to a 4-dimensional
action space, while the discriminator maps the action space to a discrete set of cardinality 2. Expert
traces were taken from another network, trained beforehand using the Proximal Policy Optimization
(PPO) method. The choice to use a learned controller, rather than a classically designed optimal
controller, was made in order to save time.

Here are examples of the training curves obtained for the LunarLander:

The performance of the GAIL-derived policy was comparable to that of the expert, however it trained
in a fraction of the time. It stands to reason that were we to implement a classical feedback controller
for the lander, we would see similar results.

4 Discussion

4.1 Model-based Reinforcement Learning

While model-based reinforcement learning has shown satisfactory results in cart-pole example, its
performance in LunarLander was inadequate. We suppose that this is due to a larger state space and
action space in the latter example. An argument can be made against this conjecture by considering
previous work employing this method. In [1]], the authors have shown that model-based reinforcement
learning works for MuJoCo examples, which also have relatively large state space and action space.
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The experiments have shown that performance of a model predictive controller does not change
significantly depending on whether a neural network or actual dynamics are used. This indicates that
the main problem of the policy lies in the choice of random sampling method to execute MPC. In
large action space, it is well possible that all of the randomly selected action sequences are highly
sub-optimal, which leads to a choice of sub-optimal action and, thus, to bad performance.

4.2 Generative Adversarial Imitation Learning

We were able to successfully train a GAIL network for both the cart-pole and LunarLander systems.
Our biggest problem was that we were not able to train control policies for more complicated systems
such as the MuJoCo examples. Obviously using knowledge of a system, such as its model or
state-representation, is useful for the purposes of control. We confirmed that, at the very least, such
knowledge can significantly speed up the training time for a learned controller.

The next step for our research must be to analytically characterize the relationship between our
learned controllers and the dynamical systems they act on. This is because a main focus of control
theory is safety, and without a precise characterization of how a learned controller will affect the
system it acts on, it is unreasonable to apply any of our learning techniques to real-world systems.
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