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Abstract

This paper explores the task of remote photo-
plethysmography (rPPG), where we use standard RGB
videos to estimate a human subject’s pulse signal. We con-
struct a simple proof-of-concept algorithmic pipeline us-
ing both the Spatial Subspace Rotation (2SR) and Plane-
Orthogonal-to-Skin (POS) methods, requiring only one
initial skin-pixel identification step. We then verify our
pipeline’s output with a small sample from two data sets,
and discuss potential areas for improvement.
1. Introduction

Photo-plethysmography (PPG) is a well established
method for extracting human vital signs such as pulse sig-
nal, blood oxygen content, and heart rate from light reflec-
tions on the skin. Traditionally, extracting these signals re-
quires a precise LED light source that is in contact with the
subject’s skin, to avoid signal interference.

In this work, however, we tackle the slightly more dif-
ficult task of remote photo-plethysmography (rPPG). The
key difference between remote methods and traditional PPG
methods is that we no longer require the subject to be in di-
rect contact with the light source. Instead, rPPG takes a
simple color (RGB) video of the subject and extracts the
subject’s pulse signal by analyzing variations in the sub-
ject’s skin hue over time.

There are a wide variety of algorithms for rPPG in lit-
erature [9, 7, 2, 3, 6, 4], but in this work we leverage and
investigate two recently developed methods. In particular,
we use the Spatial Subspace Rotation (2SR) and the Plane-
Orthogonal-to-Skin (POS) methods, which operate under
similar guiding principles. We highlight their similarities
and distinctions in the following sections, and compare their
effectiveness on some proof-of-concept sample data pro-
vided both by the course and by the references in [1].

2. Methods
In this work, we design a processing pipeline that takes

a standard RGB video of a human subject, extracts the skin

pixels with mild supervision, then estimates the subject’s
pulse signal with one of two established methods. Finally,
we perform frequency analysis to estimate the instantaneous
heart rate of the subject. The entire algorithmic pipeline is
illustrated in Fig. 1.

2.1. Skin Detection

Given an arbitrary video of a subject, only a small num-
ber of recorded video pixels contain the signal we seek–
those corresponding to the subject’s skin. The natural first
step in our pipeline is to extract exactly these pixels from
our raw input videos.

Inspired by prior work in [9] and [8], we turn to kernel-
ized one-class support vector machine (OC-SVM) to iden-
tify which pixels correspond to the subject’s skin. To be pre-
cise, we begin by asking the user to identify several small
regions of skin pixels in the first frame of the video. We
then extract these regions in the first few frames and mark
them as positive features for the kernelized OC-SVM.

Once the OC-SVM is trained with these features, we use
it to classify pixels as skin or non-skin in each frame of the
provided video. The resulting “stripped” video of only skin
pixels is fed into the proceeding algorithms to estimate the
pulse signal.

2.2. Spatial Subspace Rotation (2SR)

The spatial subspace rotation methodology, as described
in [9], is performed in two steps:

1. find the principal components of the skin pixels from
each video frame in RGB space;

2. determine the change in magnitude and orientation of
the dominant principal component over time for pulse
extraction.

Let N ∈ Z>0 be the number of skin pixels in an image at
time t. We construct matrix I(t) ∈ RN×3 by stacking the
RGB values of skin pixels. Let the singular value decom-
position (SVD) of matrix I(t) = U(t)Σ(t)V T (t), where
Σ(t) ∈ RN×3, U(t) ∈ RN×N , and V (t) ∈ R3×3. The
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Figure 1. A flowchart illustrating our algorithmic pipeline. Data is input as a sequence of video frames containing a human subject. An
external (human) source identifies some regions of skin pixels for the OC-SVM algorithm, which then removes irrelevant pixels from the
video frames. The stripped video is then processed by either/both the 2SR or POS algorithms, creating estimates of the pulse signal. This
estimated signal is filtered and its spectrum is analyzed via periodogram to estimate the subject’s heart rate.

principal components of the skin pixels in RGB space are
given by columns of matrix V , while singular values in Σ
give a metric of how spread out the skin pixels are in cor-
responding components (we convert those into eigenvalues
by λi(t) = Σii(t)

2

N ).
The change in magnitude and orientation of the domi-

nant principal component v1(t) is found over a sliding win-
dow. Two quantities of interest to us are the rotation be-
tween v1(t) and the plane defined by the next largest prin-
cipal components v2(τ) and v3(τ), which we calculate as:

R(t, τ) = (vT1 (t)v2(τ), vT1 (t)v3(τ)), (1)

and the scaling of λ1(t) with respect to λ2(τ) and λ3(τ):

S(t, τ) = (
√
λ1(t)/λ2(τ),

√
λ1(t)/λ3(τ)). (2)

To emphasize the effect that blood flow in the subject has
on both of these quantities, we element-wise multiply these
quantities and backproject:

SRb(t, τ) =
[
v2(τ) v3(τ)

]
· SR(t, τ). (3)

Let us denote the first and second row of
−→
SRb(τ) by

−→
SRb1(τ) and

−→
SRb2(τ), respectively. Before aggregating the

data from each window, we preprocess it into a vector
−→
SRagg(τ):

−→
SRagg(τ) =

−→
SRb1(τ)− σ(

−→
SRb1(τ))

σ(
−→
SRb2(τ))

−→
SRb2(τ), (4)

where σ is the standard deviation operator. Finally, we ag-
gregate the data for all windows by adding it to the pulse
signal −→p as follows:

−→p τ (τ : τ + l − 1) = −→p τ−1(τ : τ + l − 1) +
−→
SRagg(τ),

(5)

where −→p τ denotes the values of the pulse signal at τ th iter-
ation of the algorithm. We initialize by −→p 0 = 0.

2.3. Plane-Orthogonal-to-Skin

The second algorithm for pulse signal extraction we con-
sider is the Plane-Orthogonal-to-Skin method introduced in
[7]. The algorithm follows the same key steps as 2SR out-
lined above, namely:

1. identify a representative vector in RGB space defining
the skin tone of the subject;

2. track deviations from this representative vector (the
pulse signal) by projecting the RGB video signal onto
planes orthogonal to the vector.

The key difference in the POS algorithm as opposed to
2SR lies in how the representative skin hue (i.e. a skin vec-
tor in RGB space) is computed, and then how this pixel’s
variation is measured.

In the POS algorithm, we begin by computing the aver-
age RGB vector C(n) ∈ R3 of each frame n in the stripped
video. We do this to mitigate effects caused by lighting
changes, as well as small movements in the subject’s face.

We next compute the “reference” representative RGB
vector that we will track deviationa from, Cref ∈ R3, by
taking an average over a time window of length W , i.e.
Cref = 1

W

∑n+W
i=n C(i). The data within this window,

C(i), is then adjusted so that Cref = 1 ∈ R3.
For each frame i in the averaging window, we compute

the projection of the frame’s average RGB vector C(n) onto
planes orthogonal to the skin vector 1 ∈ R3, which min-
imizes the impact of skin hue brightness variations from
light and movement. Finally, the resulting one-dimensional
signals are re-combined with a tuning parameter dependent
on the standard deviations, selected to maximize the pulse
signal strength.

This process is repeated while sliding the window of
length W across the entire stripped video data. This win-
dow is typically selected to be approximately 1.6 seconds
in length [7]. At each placement of the window, the result-
ing estimate is overlap added to create a more robust and
accurate pulse signal estimate.
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2.4. Pulse Signal Filtering

The pulse signal estimates produced by both the 2SR and
POS algorithms still contain various artifacts resulting from
noisy measurements and compression artifacts.

In our examples–particularly in the Instructor provided
data set discussed in Section 3.2–there were video compres-
sion artifacts causing a significant oscillation of all video
pixels at frequencies of 1 and 2 Hz. To mitigate this, we ap-
plied bandstop filters with a width of 0.04 Hz around these
regions for this data set.

In addition, human physiology tells us that reasonable
heart rates ought to be in the range of 40-200 beats per
minute (this is a very conservative definition of “reason-
able”). These heart rates correspond to a frequency band
of around 0.6 - 3.3 Hz, so we apply a bandpass filter over
these frequencies to our estimated pulse signal. This band-
pass filtering produces smoother and cleaner results from
our somewhat noisy estimated signal.

2.5. Heart Rate Estimation

Once we have constructed and appropriately pre-
conditioned an estimate for the pulse signal, we must esti-
mate the subject heart rate. Intuitively, the heart rate should
be the most consistent periodic signal in the estimated pulse.
If we examine the frequency spectrum of the estimated sig-
nal then, the frequencies with the largest contribution (high-
est power spectral density) ought to be from the subject’s
heart rate. If we simply compute the power spectral density
of the entire estimated pulse signal, the highest peak should
correspond to the average heart rate over the interval.

If we are instead interested in the instantaneous heart rate
at various times throughout the given video, we could con-
sider computing the power spectral density along windows
of our estimated signal. This idea turns out to be precisely
the periodogram of the signal. Given our estimated pulse
signal H(i), for i = 1, 2, ..., N , the periodogram is a set of
power spectral densities P(i) computed at several sampled
time windows i = 1, 2, ..., Ñ . If we select the maximum
frequency component (the highest peak) of the power spec-
tral density P(i) at each sampled time window i, we recover
instantaneous estimates of the heart rate.

The size of this window in our periodogram method rep-
resents a trade off between accuracy and time fidelity. A
larger window includes more measurements and therefore
produces a more accurate estimate of the heart rate. How-
ever, a larger window means less time windows can be com-
puted, therefore we lose some resolution in the time do-
main.

3. Results
We validate our results on two small data sets: a set of

three videos of different subjects recorded in [1], and an-

Figure 2. Sample frames before and after skin detection using OC-
SVM for a subject in the external data set from [1] (left), and data
provided by the course Instructor (right).

Figure 3. Visual comparison of the true and estimated PPG signal
(left) and instantaneous heart rate (right) by both the 2SR and POS
algorithms on a sample subject from the external data provided by
[1].

other provided by the course Instructor. We highlight proof-
of-concept results on each data set individually using the
2SR and POS algorithms below.

3.1. External Data

The small sample of data provided in [1] consists of three
different subjects completing a math puzzle while sitting in
front of a green backdrop. Simultaneously, the subject’s
PPG signal and instantaneous heart rate are recorded. Be-
cause this data set provides ground truth PPG and heart rate
signals, we can compare the accuracy of our PPG signal and
heart rate estimation processes separately.

For all videos, the skin detection algorithm was very
effective. This accuracy is unsurprising, as each video is
stripped using a machine learning model uniquely tailored
to the subject in question. For reference, a sample stripped
frame from one subject video is shown in Fig. 2.

The actual PPG signal provided with the data set was
very close to the estimated signal from both the 2SR and
POS algorithms (see Fig. 3 for visual reference). To verify
this closeness rigorously, we computed Pearson’s correla-
tion coefficient for 2SR and POS’s outputs for each subject
in Table 1. In all cases, the coefficient is above 0.6, indicat-
ing good correlation between the true PPG signal and the
estimate.

For heart rate estimation, we see promising results across
all subjects. Over large windows, the heart estimate from
both 2SR and POS follows the average heart rate from the
subject closely. Both methods also showed fair, but less
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Figure 4. Scatter plots showing the relationship between the in-
stantaneous heart rate estimates by the 2SR algorithm (left) and
the POS algorithm (right) for the instructor data sets.

impressive results on instantaneous heart rate estimation, as
shown in Fig. 3.

3.2. Instructor Data

The data provided by the course Instructor consists of
four videos with simultaneous heart rate measurements for
each. Because of this format, we can only compare our full
algorithmic pipeline outputs with the provided data set. In
other words, we must convert the output of 2SR and POS
into instantaneous BPM measurements and only then we
can compare with the ground truth measurements.

We can see from Table 1 that the BPM signals provided
by both algorithms have a low correlation with the ground
truth data. Moreover, the parameter for statistical signifi-
cance (p-value) of this correlation is fairly high (order 0.1)
in all cases. From Figure 4, we observe that the majority of
BPM estimates are significantly off. Also, note in Figure 5
that most of the estimates provided by the algorithms are at
60 BPM. We conjecture that this phenomenon is caused by
compression or lighting artifacts present in video files.

4. Discussion and conclusions
In this work we considered the problem of estimating a

photo-plethysmogram (PPG) signal from remote videos of
subjects. We have considered two algorithms: spatial sub-
space rotation (2SR) and Plane-Orthogonal-to-Skin (POS).
Both algorithms determine PPG by observing the motion
of a ”representative” vector in RGB space. The only dif-
ference is that 2SR chooses the ”representative” vector to
be the main principal component of skin pixels, while POS

Set 2SR POS
1 0.676 0.64
3 0.685 0.60
4 0.685 0.64

Set 2SR POS
1 (front) 0.042 0.032

1 (bottom) 0.042 0.034
2 (front) 0.114 0.3167

2 (bottom) 0.114 0.3595
Table 1. Pearson’s correlation coefficients (all measured with sta-
tistically significant p < 0.01) between the true and estimated
PPG signal (left) and between the true and estimated instantaneous
heart rate (right) for both 2SR and POS.

Figure 5. Estimates of the instantaneous heart rates by both the
2SR and POS algorithms compared with the true instantaneous
heart rate in one video of the instructor’s data set.

chooses that to be their average. Applying these algorithms
on external data from [1] has produced adequate results
when compared with ground truth. This, however, was not
the case when these algorithms were applied to the data pro-
vided by the instructors. Our conjecture is that movement,
lighting issues, and compression artifacts may have poorly
conditioned these videos for our approach.

Implementing these algorithms, we noted that many de-
cisions made by the authors of [9] and [7] were heuristic
(e.g., finding the rotation of the main principal component
with respect to two other principal components). There-
fore, as part of future work, we suggest that the motion of
the ”representative” vector be modelled using system iden-
tification methods from control theory. The idea is to fit the
motion of the representative vector for data from a sliding
window to a linear dynamical system. The imaginary com-
ponent of the dominant eigenvector of the system should
give us the frequency of pulses in this window.

From a computational imaging point of view, based on
the discussion from [7], we think that we might benefit from
shining green light on the subject when taking the videos as
the green component of light is more sensitive to blood flow
influences. Validating this requires us to improve the ex-
perimental setup because the preliminary experiments have
shown that the current equipment (i.e., Fitbit tracker) does
not measure pulse data and measures BPM every 5 seconds
only. In addition, the algorithms might benefit from filter-
ing the direct component of light. However, the algorithms
separating direct and global components often involve aver-
aging images over video (e.g., [5]) which would destroy the
pulse information.
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