Task Classification of EEG Data with Neural Networks

Trung Le Hazar Benan Unal
205223834 605229363
Abstract

In brain-computer interfacing, there has been an in-
creased interest in the problem of end-to-end electroen-
cephalogram (EEG) signal decoding. In this project, we
have studied deep neural networks with a range of differ-
ent architectures for the purpose of decoding four imag-
ined tasks from raw EEG taken with 22 electrodes. We have
mainly focused on architectures, which are based on convo-
lutional neural networks (CNN), recurrent neural networks
(RNN), and combinations of both. First, two purely CNN ar-
chitectures with different network depths were considered.
Next, performance of several architectures based on LSTM
and GRU was studied. The experiments have shown that the
best testing accuracy of 62.8% is achieved by using Deep
ConvNet. This is unexpected because RNNs are known to
handle temporal series, like EEG, better than CNNs. More-
over, we have discussed some insights as to how special ar-
chitecture design choices may help the classification task.

1. Introduction

In recent years, electroencephalography (EEG) has at-
tracted researchers as a highly desirable pathway for brain-
computer interfacing (BCI) due to its non-invasive nature
and low cost. Motivated by this, we have studied the dataset,
which consists of several 4-second trials wherein a subject
imagines to perform one of four physical actions. Here, we
have decided to view this data in two mutually exclusive
ways:

1. treat each trial as an image and try to extract the fea-
tures for each task;

2. treat each trial as temporal data over each electrode,
exploiting the temporal information to do classifica-
tion.

These views encourage us to use convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs), re-
spectively.

The use of CNN-based architectures as a solution to the
BCI problem is well-studied. A good example of study

Hsien-Chih Hung

Alimzhan Sultangazin

104466136 005035952

about CNNs in EEG signal processing is presented in [2].
In this paper, the authors used a dataset similar to the one we
are using. To validate efficacy of this approach, we started
with two CNN models described in this work, namely Shal-
lowConvNet and DeepConvNet. These two models are in-
spired by architectures in computer vision research, and in-
corporated two convolution layers to learn both temporal
and spatial features in EEG data.

Next, being motivated to see how RNN can exploit tem-
poral features inherent to EEG signal, we explored mod-
els built with LSTM and GRU, and implemented varia-
tions of GRU-based architectures from [1]. Roy et al. in
[1]] came up with ChronoNet, an architecture consisting of
multiple 1-D convolution layers of varying sizes, in hope
that these layers learn features across multiple timescales
and, thus, are able to adapt to the unique temporal fea-
tures of a different dataset. Learning from the success of
residual blocks, ChronoNet also solved the vanishing gra-
dient problem by adding skipped connections to create a
gradient highway between layers. Finally, we put Deep-
ConvNet and ChronoNet in sequence, hypothesizing that
ChronoNet may help further extract sophisticated features
obtained from DeepConvNet and improve the overall accu-
racy.

To observe the effects of different scenarios, we:

e trained the models for only 1 subject;

e trained the models for all subjects;

e used cropped and uncropped training set;

e plotted the accuracy as a function of trial time.

The details of the architectures can be found in supple-
mentary materials at the end of this report.

2. Results

The testing accuracy for the models we trained can be
seen in Table 1. Testing accuracies as a function of time and
confusion matrix for our best performance can also be found
in Figures[I] 2l 3] and] Note that only half of the total
duration is plotted for DeepConvNet accuracy as a function
of time due to long running time it needs.

According to these results, when the network is trained
with 1 subject only, we get the best performance with Deep-
ConvNet (60.93% accuracy). For the networks trained with
all subjects, we get 62.75% accuracy as the best accuracy
with DeepConvNet. Overall, we observe that DeepCon-
vNet is the most reasonable choice for task classification
from EEG data.

3. Discussion

The given dataset is small in size and, therefore, we
augmented the data by cropping each trial along time axis,
where each crop contains 250 time points and is strided by
10 time points. Although we use smaller temporal data in
cropped version, we observe that using 15 times larger train-
ing dataset from cropping greatly improved accuracy. This
shows that only a small portion of all temporal informa-
tion is sufficient to train the network. This result is also in
line with plots that show accuracies as a function of time:
The accuracy does not change much after 1/4 of the tem-
poral data. Secondly, we observe substantial improvement
for shallow and deep convnets when the network is trained

Accuracies as a function of time

Time

Figure 1. Accuracy as a function of time for shallow ConvNet

Accuracy as a function of time(DeepConvNet)

]

Accuracy %

Y

100 150 00 =0 300 B0 400 450 500
Time

Figure 2. Accuracy as a function of time for deep ConvNet

and tested on all subjects. However, this is untrue for other
networks. We can hypothesize that these networks are too
simple to deal with a large amount of data. We keep them
as they are not to make the running time too long.

We see that CNN architectures perform better than RNN
architectures. This goes against our initial hypothesis that
EEG as a time series signal should be better handled by
RNN as RNN has memory of the state. The reason could be
that for EEG, the spatial features might be much more infor-
mative. EEG is well-known to have low spatial resolution,
thus it typically needs data from multiple electrode chan-
nels to fully represent the cognitive process. In our RNN
architectures, even in ChronoNet, we performed convolu-
tion over the time series only, while for CNN architectures
we also performed convolution across electrode channels.

Among RNN and CNN-RNN hybrid architectures, we
saw no significant difference in testing accuracy, but
more sophisticated models (from CRNN up to DeepCon-
vChronoNet) seem to outperform simple models (LSTM,
DGRU). This is expected, as complex models have higher
capacity to extract meaningful features from the dataset.

Besides the overall accuracy, the confusion matrix can
also be informative to design a better network or to use
DeepConvNet only for more reliable predictions. In our
confusion matrix, which is generated from our best predic-
tion 62%, we see that the network is somewhat biased for
class 1. Therefore, it might be useful to take this into ac-
count when evaluating the reliability of task classifications.

Since, even after data augmentation, we use a relatively
small dataset, we sometimes encounter overfitting during
the training process. Using a larger dataset may result in
better performances for all the models if the architectures
are optimized accordingly. In addition, some other obser-
vations about the EEG data may lead to improvements for
these models. For example, if a periodic behavior is ob-

Confusion Matrix for Deep Network

True Ciass

kY

Predicted Class

Figure 3. Confusion Matrix for the predictions with the best per-
formance,i.e. DeepCNN 62%

served in electrode recordings, RNN architectures with bet-
ter performance can be designed.

Design choices for experimented architectures and their
effects on the results are discussed below:

3.1. Shallow ConvNet

The shallow convnet consists of 2 convolutional layers.
The filters for these convolutional layers are chosen to be
horizontal and vertical, i.e. (1,25) and (22,1) respectively.
The main purpose of choosing these shapes is to extract fea-
tures in temporal dimension, as well as features across elec-
trode channels. As can be seen in results, shallow convnet
achieves good accuracy, near that of deep convnet. This is
consistent with the results in [2], where they achieve 1%
lower accuracy for shallow network. We choose ’elu’ as
activation function (similarly to [2]]) since it works better
than ’relu’ for this particular task. One possible reason for
this is that ‘relu’ removes all the negative values while "elu’
results in small negative gradients, which allow the network
to learn features that are only slightly different across elec-
trodes.

3.2. Deep ConvNet

In deep convnet, we simply repeat the shallow network
with some adjustments. The main difference from the shal-
low network, except being deeper, is that filter sizes are
longer along the dimension of electrodes. In particular, we
convert 2 successive convolutional layers with filter sizes
(1,25) and (22,1) into, for example, one convolutional layer
with filter size (10,50). This allows the network to encode
information between different electrodes simultaneously.
One possible advantage of this approach is that the network
becomes more robust to noise in the electrode recordings.
As a result, we achieve the best performance when we use
deep convnet. For the same reason, we choose "elu’ activa-
tion in the shallow network. Due to extremely long training
time with limited computation capacity, for cropped, all-
subject dataset we needed to stop early in the middle of
training and reported the testing accuracy there. The final
testing accuracy could have increased further if we had not
stopped early, as observed by the trend of validation accu-
racy.

3.3. LSTM

Due to the size of the EGG data set, it is easy for a model
to overfit the training data and for the model to become less
general. When training LSTM models, it is noted that the
performance of the model does not increase as more layers
are added to it. In the end, the chosen architecture included
one LSTM layer, one dense layer with batch normalization
before both. The performance of the model on the testing
set is roughly 35% accurate. We used both cropped and un-
cropped data, as well as sub-sampled data. It turns our un-

cropped and sub-sampled data outperform the cropped data.
When applied to Subject 1 data only, sub-sampled data al-
low the model to achieve 42% accuracy. For all subjects,
network trained on sub-sampled data achieves 35% accu-
racy, while the one trained on cropped data - below 30%.
With increased time data, we see a consistent increase in
loss, however, the model accuracy remains roughly 35%.

34. DGRU + CRNN + ICRNN + CDRNN +
ChronoNet + DeepConvChronoNet

These architectures are mirrored from those discussed
in [1]. DGRU is 4 layers of GRU stacked together. We
selected 50 units instead of 32 as used in the original pa-
per, since these values gave us the best performance em-
pirically for our dataset. This is equivalent to remem-
bering in the model’s hidden states 200ms worth of EEG
data (we assumed this interval contains the most meaning-
ful features of EEG). CRNN develops DGRU by adding
three 1-D Convolution layers, which the authors in [1] at-
tested will extract temporal data from raw EEG and feed
it to the GRU layers. ICRNN further tweaked CRNN by
building multiple 1-D Convolution layers of exponentially
varying filter length, hoping to adapt different dataset with
different inherent temporal characteristics. CDRNN im-
plemented skipped connections between GRU blocks, sup-
posedly solving the vanishing gradient problem. Finally,
ChronoNet is built on top of ICRNN and added skipped
connections as in CDRNN. Aside from the hyperparame-
ters discussed above, we kept other hyperparameters as pre-
sented in the original paper.

Our custom DeepConvChronoNet is built based on the
hypothesis that once we cascade ChronoNet after Deep-
ConvNet, ChronoNet could further process the extracted
features given by DeepConvNet. However empirically
this model perform just well as ChronoNet and worse
than DeepConvNet. Perhaps further hyperparameter tuning
could help improve the performance of this model.

N A

\
\

0340

0335

20 400 600 800 1000
Time bins

Figure 4. Accuracy with increasing time input LSTM

References

(1]

(2]

S. Roy, F. I. Kiral-Kornek, and S. Harrer. Chrononet: A deep
recurrent neural network for abnormal eeg identification. 01
2018.

R. Schirrmeister, L. Gemein, K. Eggensperger, F. Hutter, and
T. Ball. Deep learning with convolutional neural networks for
decoding and visualization of eeg pathology. 2017 IEEE Sig-
nal Processing in Medicine and Biology Symposium (SPMB),
2017.

Accuracy (%)

Architectures Subject 1 All subjects
nocrop cropped no crop cropped
ShallowConvNet 44.00 60.67 56.88 47.93
DeepConvNet 46.00 60.93 62.75 39.57(early stopped)
DGRU - 44.4 - 30.4
CRNN - 49.46 - 325
ICRNN - 52.79 - 34.66
CDRNN - 53.33 - 32.59
ChronoNet - 52.53 - 31.99
DeepConvChronoNet - 52.80 - 32.84

Table 1. Testing accuracies of considered architectures for different datasets

Block Layer # filters size # params Output Activation Options
1 Conv2D 40 (1,25) 1040 (22,1000,40) None
Conv2D 40 (22,1) 35240 (22,1000,40) ELU
BatchNorm 160 (22, 1000, 40)
Lambda (Square) (22,1000,40)
AveragePool2D (1,75) (22,62,40) stride = (1,15)
Lambda (ReLU) (22,62,40)
Dropout (22,62,40) p=0.5
Flatten 54560
Classifier Dense 4 218244 Softmax
Table 2. ShallowConvNet
Block Layer # filters size # params Output Activation Options
1 Conv2D 25 (1,10) 275 (22,1000.,25) None
Conv2D 25 (22,1) 13775 (22,1000,25) None
BatchNorm 100 (22, 1000, 25)
Activation (ELU) (22, 1000, 25)
MaxPool2D (1.3) (22,333,25) stride = (1,3)
Dropout (22,333,25) p=0.5
2 Conv2D 50 (25.10) 312550 (22,333,50) None
BatchNorm 200 (22,333, 50)
Activation (ELU) (22, 333, 50)
MaxPool2D (13) (22,111,50) stride = (1,3)
Dropout (22,111,50) = 0.5
3 Conv2D 50 (50,10) 1250050 (22,111,50) None
BatchNorm 200 (22, 111, 50)
Activation (ELU) (22, 111, 50)
MaxPool2D (1.3) (22,37,50) stride = (1,3)
Dropout (22,37,50) p=0.5
4 Conv2D 200 (100.10) 10000200 (22,37,200) None
BatchNorm 800 (22, 37, 200)
Activation (ELU) (22, 37,200)
MaxPool2D (1.3) (22,12,200) stride = (1.3)
Dropout (22,12,200) p=0.5
Flatten 52800
Classifier Dense 4 218244 Softmax
Table 3. DeepConvNet
Block Layer # filters # params Output Activation
1 GRU 50 786000 (1000,50)
2 GRU 50 1503000 (1000,50)
3 GRU 50 1503000 (1000,50)
4 GRU 50 1503000 50
Classifier Dense 4 2004 Softmax

Table 4. DGRU architecture

Block Layer # filters size # params Output Activation Options
1 Input (1000,22)
ConvlD 4 32 2820 (500,4) None stride =2
ConvlD 4 32 516 (250.4) None stride = 2
ConvlD 4 32 516 (125,4) None stride =2
2 GRU 50 759000 (125,50)
3 GRU 50 1503000 (125,50)
4 GRU 50 1503000 (125,50)
5 GRU 50 1503000 50
Classifier Dense 4 2004 Softmax
Table 5. CRNN architecture
Block Layer # filters size # params Output Activation Options
1 Input (1000,22)
ConviD 8/4/2 32 5640/2820/1410 (500.8)/(500,4)/(500,2) None stride =2
Concatenate (500,14)
BatchNorm 56 (500,14)
2 ConviD 8/4/2 32 3592/1796/898 (250,8)/(250,4)/(250,2) None stride =2
Concatenate (250,14)
BatchNorm 56 (250,14)
3 ConviD 8/4/2 32 3592/1796/898 (125,8)/(125,4)/(125,2) None stride =2
Concatenate (125,14)
BatchNorm 56 (125,14)
4 GRU 50 9900 (125,50)
5 GRU 50 15300 (125,50)
6 GRU 50 15300 (125,50)
7 GRU 50 15300 50
Classifier Dense 4 204 Softmax
Table 6. ICRNN architecture
Block Layer # filters size # params Output Activation Options Connected to
1 Input (1000,22)
a ConviD 4 32 2820 (500,4) None stride =2 Input
b ConviD 4 32 516 (250,4) None stride =2 ConvlD (la)
c ConviD 4 32 516 (125.4) None stride =2 ConvID (1b)
2a GRU 50 759000 (125,50) ConvlD (lc)
b GRU 50 1503000 (125,50) GRU (2a)
c Concatenate (125,100) GRU (2a, 2b)
3a GRU 50 2253000 (125,50) Concatenate (2¢)
b Concatenate (125,150) GRU (2a,2b,3a)
4a GRU 50 30030000 50 Concatenate (3b)
Classifier Dense 4 2004 Softmax GRU(4a)
Table 7. C-DRNN architecture
Block Layer # filters size # params Output Options Connected to
1 Input (1000,22)
a ConvlD 8/4/2 32 5640/2820/1410 (500.8)/(500.4)/(500.2) stride =2
b Concatenate (500,14) ConvID(lax 3)
c BatchNorm 56 (500,14)
2a ConvlD 8/4/2 32 3592/1796/898 (250,8)/(250.4)/(250.2) stride =2
b Concatenate (250,14) ConviD(la X 3)
c BatchNorm 56 (250,14)
3a ConviD 8/4/2 32 3592/1796/898 (125,8)/(125,4)/(125,2) stride = 2
b Concatenate (125,14) ConviD(la X 3)
c BatchNorm 56 (125,14)
4a GRU 50 759000 (125,50) BatchNorm (3¢)
b GRU 50 1503000 (125,50) GRU (4a)
c Concatenate (125,100) GRU (4a, 4b)
5a GRU 50 2253000 (125,50) Concatenate (4¢)
b Concatenate (125,150) GRU (4a,4b,5a)
6a GRU 50 30030000 500 Concatenate (5b)
Classifier Dense 4 2004 Softmax

Table 8. ChronoNet architecture

